Zero to Hero: O

Programming O
Nvidia Hopper with ® =
MLIR’'s NVGPU Dialect

Guray Ozen . .

10-11th April 24
EuroLLVM Meeting 2024 .

Google Research ‘ . .

A big thank you to

Quentin Colombet Jacques Pienaar Nicolas Vasilache
qgcolombet Jpienaar - he/him nicolasvasilache

Manish Gupta

manishucsd Adam Paszke

apaszke

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Huang's Law [1, 2]

Single-Chip Inference Performance - 1000X in 10 years

4500.00

4000.00

3500.00

3000.00

2500.00

Int 8 TOPS

2000.00

FP32
FMA

1500.00

1000.00

500.00

K20X

3.94
0.00

H100
4000.00

Sparsity

FP16

HDP4 i

1248.00

4/1/12 8/14/13

[1] https://en.wikipedia.org/wiki/Huang%27s_law
[2] Hardware for Deep Learning, Bill Dally, HotChips

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

12/27/14

5/10/16 9/22/17 2/4/19 6/18/20 10/31/21

3/15/23

https://en.wikipedia.org/wiki/Huang%27s_law

Huang's Law [1, 2]

H100
4000.00

wnat i' I told 0“ ence Performance - 1000X in 10 years
| ey
i

Sparsity

N\

there is no "performance portability”

FP32
FMA FP16
1500.00 A100
1248.00
1000.00
500.00
K20X M40
3.94 6.84 21.20
0.00 o
4/1/12 8/14/13 12/27/14 5/10/16 9/22/17 2/4/19 6/18/20 10/31/21

[1] https://en.wikipedia.org/wiki/Huang%27s_law
[2] Hardware for Deep Learning, Bill Dally, HotChips

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

3/15/23

https://en.wikipedia.org/wiki/Huang%27s_law

Evolution in Hardware:
NVIDIA Hopper Architecture A ————

Warp Scheduler (32 thread/clk) ‘Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
INT32 FP32 FP32 FP84. INT32 FP32 FP32 FP84
INT32 FP32 FP32 FP84. INT32 FP32 FP32 FP64
4th gen Tensor Core
INT32 FP32 FP32 FP84 INT32 FP32 FP32 FP84
H H INT32 FP32 FP32 FP84. INT32 FP32 FP32 FPB4.
e Warpgroup level (128 threads) PTX instructions WTZ P2 FE2 roos
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
H H INT32 FP32 FP32 FP64 TENSOR CORE INT32 FP32 FP32 FP64 TENSOR CORE
e Matrix A or B can be shared memory or registers WOz f f2 fe 4MGENERATION || WUz fem 2 fes 4" GENERATION
INT32 FP32 FP32 FP64. INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64. INT32 FP32 FP32 FP64
e Supports transpose for f16 NSz [rp2 P32 Fros WISE (PrRa P2 Fros
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64. INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
Thread BlOCk ClUSterS R T g% S s S S S s s
. . L0 Instruction Cache L0 Instruction Cache
e Clustering helps reusing data on L2 R e— R —
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
Tensor Memory Accelerator (TMA)
INT32 FP32 FP32 FPB4. FP32 FP32 FP64.
. INT32 FP32 FP32 FP64 FP32 FP32 FP84
INT32 FP32 FP32 FP64 FP32 FP32 FP64
e |oad atile asynchronously L
INT32 FP32 FP32 FP64 FP32 FP32 FP84
1 1 INT32 FP32 FP32 FP64 FP32 FP32 FP64
® Not WaStIng regISterS INT32 P32 PR32 Fre4 TENSOR CORE FPs2 FP2 rres TENSOR CORE
INT32 FP32 FP32 FP64 4" GENERATION FP32 FP32 FP64 4™ GENERATION
1 1 INT32 FP32 FP32 FP64 FP32 FP32 FP64
([] SW|ZZ||ng 32b, 64b, 128b INT32 FP32 FP32 FP64 FP32 FP32 FP64

INT32 FP32 FP32 FP64 FP32 FP32 FP64

INT32 FP32 FP32 FPB4. FP32 FP32 FP64
INT32 FP32 FP32 FP64 FP32 FP32 FP64
INT32 FP32 FP32 FPe4 FP32 FP32 FP64
INT32 FP32 FP32 FPB4. FP32 FP32 FPB4

Asynchronous Barriers

ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

° He'pS Waiting TMA asynchronously Tensor Memory Accelerator
256 KB L1 Data Cache / Shared Memory

Tex Tex

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Evolution in Software: e oston of P 158
PTX[1] & CUTLASS[2] e

T Ampere Hopper
Significantly growed 595
80T 516
1. Lifespan of Ampere (~2 years) L B
400 4
2. Hopper Architecture
20 - 97 97 = 118 121 121 123 123 128 132
0-— : : : | : ; ; , ,

PTX7.0 PTX7.1 PTX7.2 PTX7.3 PTX74 PTX75 PTX7.6 PTX77|P[X7.8 PTX8.0

Evolution of CUTLASS

B Lifetime of A100 (v2.2->v2.11) [l A100->H100 (v2.11 -> v3.2)

150.00% T
Did MLIR & LLVM keep up?
100.00% —+
8
E 50.00% -+
[1] Compared pages and table-2 in PTX pdf
[2] Used cloc for LoC 0.00%

Files Codes

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect Google 6

MLIR has gained Hopper Support

NVGPU and NVVM Dialects
@ Hopper GPU Support

Performance
4%’ MLIR has close performance to cuBLAS

Upstream
All the work presented is fully upstreamed to MLIR

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

What We Will Discover in Tutorial
Navigating Zero to Hero

Me no Hopper GPU

NVGPU dialect

Multistage Kernel

Warp Specialized Kernel
Get cuBLAS like Performance

MLIR Upstream Dialect Layers
Improved GPU, NVGPU, and NVVM Dialects

‘ i] NVGPU Dialect

e High level operations for Tensor Core, TMA
e NVGPU— NVVM
=] o | oo
Linalg ! Your Dialect 2 !
- J
" ouwdiakct1 | NVVM Dialect
|/ e J e Low level operations (closer to PTX)

° NVVM — PTX or LLVM intrinsic

‘ NVGPU : nvgpu. tma.load, nvgpu.warpgroup.mma, ...

‘ NVVM : cp.async.bulk, wgmma.mma_async, ... ’ GPU Di a leCt
e Kernel launch, Cluster launch
LLVM e Driver communication
PTX

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

MLIR Upstream Dialect Layers
Let’'s program NVGPU with python bindings

| e | Today we will program

e Python — NVGPU — NVVM
MLR " YouDisectz |

e 2
" YourDislect1 |
v e J

‘ NVGPU : nvgpu. tma.load, nvgpu.warpgroup.mma, ...]

‘ NVVM : cp.async.bulk, wgmma.mma_async, ... ’

LLVM

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

MLIR Upstream Dialect Layers
Connect Your Dialect — NVGPU

‘ Python bindings

| Today we will program

e Python — NVGPU — NVVM

MLIR] Fmmmmmmmoo
Linalg ! Your Dialect 2
Co

2 One can lower other dialects into NVGPU

-
| YourDialect1 |
v e

l e Vector - NVGPU — NVVM

‘ NVGPU : nvgpu. tma.load, nvgpu.warpgroup.mma, ...

e Linalg > NVGPU — NVVM
] e Your Dialect 1 - NVGPU — NVVM

‘ NVVM : cp.async.bulk, wgmma.mma_async, ...

LLVM

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

11

Py + MLIR vs CUTLASS

Dialects vs Layer Comparison

{ Python bindings

MLIR . N |
Linalg ! Your Dialect 2 !
&

RS
i Your Dialect1 |
v -

[NVGPU : nvgpu. tma.load, nvgpu.warpgroup.mma, ...
{ NVVM : cp.async.bulk, wgmma.mma_async, ...
LLVM
PTX

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

CUTLASS

Device

Kernel

Collective

Atom

Thread

Intrinsic

MLIR NVGPU + Py

@NVDSL .mlir_func
def gemm(x, y, z):
Setups and Calls Kernel

@NVDSL .mlir_gpu_launch(...)
def gemm_kernel()
Kernel Body

Multistage:
def prologue() # has nvgpu OPs

def mainloop() # has nvgpu OPs
def epilogue() # has nvgpu OPs

Warp Specialized:

def producer_loop() # has nvgpu OPs
def consumer_loop() # has nvgpu OPs

NVGPU Dialect

NVVM Dialect

— Setup interface on
Host

— Launch kernel,
calculate the grid
and smem

— Pipeline matmul,
main loop,
epilogue

— Tensor core,
TMA load/store

— Numerical
conversion, fast math, ...

— PTX instruction

12

Google Research

Program NVGPU Dialect
With Python Bindings

Tutorials : #87065 is about the be upstreamed

Codes are here: {your-llvm-path}/mlir/test/Examples/nvgpu

e ChO.py — HelloWorld

e Chil.py
e Ch2.py
e Ch3.py
e Chd.py
e Chb5.py
e Ché.py

— 2D Saxpy

— 2D Saxpy with TMA

— GEMM 128x128x64 Tensor Core and TMA

— GEMM Multistage

— GEMM Warp Specialized

— GEMM Warp Specialized Persistent ping-pong (WIP)

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

14

https://github.com/llvm/llvm-project/pull/87065

NVDSL : Simplify NVGPU Dialect usage

We focus on Hopper Performance:

Simplifies:
e Simplify MLIR Host Function (func.func) IR Building
e JIT Compilation and Execution
e Operator Overloading with Arith Dialect for Readable Code
e Easy GPU IR (gpu.launch) Building

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

15

Ch1.py: 2D SAXPY
Single-Precision A-X Plus Y (SAXPY)

Regular Python code
def saxpy(y, x, alpha):
for i in range(256):
for j in range(32):
y[i, 3] += alpha * x[i, j]

Use numpy arrays

x = np.ones((256 32), np.float32)

y = np.ones((256 32), np.float32)

saxpy(x, y, 2.0)

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

16

Ch1.py: 2D SAXPY
Single-Precision A-X Plus Y (SAXPY)

Regular Python code
def saxpy(y, x, alpha):
for i in range(256): # -> blockIdx.x

for j in range(32): # -> threadIdx.x

y[i, 3] += alpha * x[i, J] q

Use numpy arrays

X = np.ones((256 32), np.float32)

np.ones((256 32), np.float32)

y
saxpy(x, y, 2.0)

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Let's write
in MLIR

1. Use MLIR GPU dialect to allocate and copy memory

Building IR with Py bindings

@NVDSL.mlir_func

def saxpy(x, y, alpha):

tl = gpu.wait(token_ty, [1])

x_dev, t2
y_dev, t3
t4

gpu.m

t5 gpu.m

t6

= gpu.alloc(x.type, token_ty, [t1], [], [])
= gpu.alloc(y.type, token_ty, [t2], []1, [])

emcpy (token_ty, [t3], x_dev, x)
emcpy(token_ty, [t4], y_dev, y)

gpu.wait(token_ty, [t5])

2. Compute 2D SAXPY kernel

@NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1))

def saxpy_

bidx =
tidx =
x_val
y_val
y_val

kernel():
gpu.block_id(gpu.Dimension.x)
gpu.thread_id(gpu.Dimension.x)

= memref.load(x_dev, [bidx, tidx])
= memref.load(y_dev, [bidx, tidx])

+= x_val * alpha

memref.store(y_val, y_dev, [bidx, tidx])

saxpy_kern

el()

t7 = gpu.memcpy(token_ty, [t6], y, y_dev)

gpu.wait(t

oken_ty, [t7])

17

Building IR with Py bindings

@NVDSL.mlir_func

Ch1.py: 2D SAXPY \def saxpy(x, y, alpha):

1. Use MLIR GPU dialect to allocate and copy memory

Build Host IR j

t1 = gpu.wait(token_ty, [])

x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [], [])
This Decorator (@\WDSL.mlir_func) builds: y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [1, [1)

t4 = gpu.memcpy(token_ty, [t3], x_dev, x)
t5

func.func @saxpy(%arg x: memref<256x32xf32>, e el 18 ([l Yea, 1)

t6 = gpu.wait(token_ ty, [t5])
%arg_y: memref<256x32xf32>, ¢ Y

0, .
%alpha: f32) # 2. Compute 2D SAXPY kernel

@NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1))
def saxpy_kernel():

bidx = gpu.block_id(gpu.Dimension.x)

tidx = gpu.thread_id(gpu.Dimension.x)

x_val = memref.load(x_dev, [bidx, tidx])

y_val = memref.load(y_dev, [bidx, tidx])

y_val += x_val * alpha

memref.store(y_val, y dev, [bidx, tidx])

saxpy_kernel()

t7 = gpu.memcpy(token_ty, [t6], y, y_dev)

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect gpu.wait(token_ty, [t7]) 18

Ch1.py: 2D SAXPY
Build Host IR

func.func @saxpy(%arg_x: memref<256x32xf32>,
%arg_y: memref<256x32xf32>, %alpha: f32) {

Building IR with Py bindings

%tl = gpu.wait async
%z_dev, %t2
%y_dev, %t3 = gpu.alloc async [%t2] () : memref<256x32xf32>

gpu.alloc async [%t1] () : memref<256x32xf32>

%t4 = gpu.memcpy async [%t3] %x_dev, %arg_x
: memref<256x32xf32>, memref<256x32xf32>
%t5 = gpu.memcpy async [%t4] %y_dev, %arg_y
: memref<256x32xf32>, memref<256x32xf32>

%t6 = gpu.wait async [%t5]

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

@NVDSL.mlir_func

def saxpy(x, y, alpha):
1. Use MLIR GPU dialect to allocate and copy memory
tl = gpu.wait(token_ty, [1])
x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [1, [])
y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], []1, [])
t4
t5
t6

gpu.memcpy (token_ty, [t3], x_dev, x)
gpu.memcpy(token_ty, [t4], y_dev, y)

gpu.wait(token_ty, [t5])

2. Compute 2D SAXPY kernel
@NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1))
def saxpy_kernel():

bidx = gpu.block_id(gpu.Dimension.x)

tidx = gpu.thread_id(gpu.Dimension.x)

x_val = memref.load(x_dev, [bidx, tidx])

y_val = memref.load(y_dev, [bidx, tidx])

y_val += x_val * alpha

memref.store(y_val, y dev, [bidx, tidx])

saxpy_kernel()

t7 = gpu.memcpy(token_ty, [t6], y, y_dev)
gpu.wait(token_ty, [t7])

19

Ch1.py: 2D SAXPY
Build Host IR

func.func @saxpy(%arg_x: memref<256x32xf32>,
%arg_y: memref<256x32xf32>, %alpha: 32) {
%tl = gpu.wait async
%z_dev, %t2 = gpu.alloc async [%tl] () : memref<256x32xf32>
%y _dev, %t3 = gpu.alloc async [%t2] () : memref<256x32xf32>
%t4 = gpu.memcpy async [%t3] %x_dev, %arg_x
: memref<256x32xf32>, memref<256x32xf32>
%t5 = gpu.memcpy async [%t4] %y_dev, %arg_y
: memref<256x32xf32>, memref<256x32xf32>

%t6 = gpu.wait async [%t5]

%t7 = gpu.memcpy async [%t6] %arg_y, %y_dev
¢ memref<256x32xf32>, memref<256x32xf32>

gpu.wait async [%t7]

Building IR with Py bindings

@NVDSL.mlir_func

def saxpy(x, y, alpha):
1. Use MLIR GPU dialect to allocate and copy memory
t1 = gpu.wait(token_ty, [])
x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], []1, [1])
y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [1)
t4 = gpu.memcpy(token_ty, [t3], x_dev, x)
t5

gpu.memcpy (token_ty, [t4], y_dev, y)
t6 = gpu.wait(token_ty, [t5])

2. Compute 2D SAXPY kernel
@NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1))
def saxpy_kernel():

bidx = gpu.block_id(gpu.Dimension.x)

tidx = gpu.thread_id(gpu.Dimension.x)

x_val = memref.load(x_dev, [bidx, tidx])

y_val = memref.load(y_dev, [bidx, tidx])

y_val += x_val * alpha

memref.store(y_val, y dev, [bidx, tidx])

saxpy_kernel()

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

t7 = gpu.memcpy(token_ty, [t6], y, y_dev)
gpu.wait(token_ty, [t7])

20

Building IR with Py bindings

@NVDSL.mlir_func

Ch1.py: 2D SAXPY def saxpy(x, y, alpha):

BUIld GPU Kernel IR # 1. Use MLIR GPU dialect to allocate and copy memory
t1 = gpu.wait(token_ty, [])

x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], []1, [1])
y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [1)
t4 = gpu.memcpy(token_ty, [t3], x_dev, x)

This Decorator (@NVDSL.mlir_gpu_launch) builds:

t5 = gpu.memcpy(token_ty, [t4], y_dev, y)

t6 = gpu.wait(token_ty, [t5])
gpu.launch blocks(256,1,1) threads(32, 1, 1) {

2. Compute 2D SAXPY kernel
} ::7 @NVDSL.mlir_gpu_launch(grid=(M,1,1), block=(N,1,1))
def saxpy_kernel():

bidx = gpu.block_id(gpu.Dimension.x)
tidx = gpu.thread_id(gpu.Dimension.x)
x_val = memref.load(x_dev, [bidx, tidx])
y_val = memref.load(y_dev, [bidx, tidx])
y_val += x_val * alpha
memref.store(y_val, y dev, [bidx, tidx])

saxpy_kernel()

t7 = gpu.memcpy(token_ty, [t6], y, y_dev)

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect gpu.wait(token_ty, [t7])

21

Ch1.py: 2D SAXPY
Build GPU Kernel IR

Inside the decorator function is the GPU Kernel:

gpu.launch blocks(256,1,1) threads(32, 1, 1) {
%bidx = gpu.block_id x

Building IR with Py bindings

@NVDSL .mlir_func

def saxpy(x, y, alpha):

1. Use MLIR GPU dialect to allocate and copy memory
t1 = gpu.wait(token_ty, [])

x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], []1, [1])
y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [1)
t4 = gpu.memcpy(token_ty, [t3], x_dev, x)

t5

gpu.memcpy (token_ty, [t4], y_dev, y)
t6 = gpu.wait(token_ty, [t5])

%tidx = gpu.thread_id x <
%6 = memref.load %x_dev[%bidx, %tidx] : memref<256x32xf32>
%7 = memref.load %y_dev[%bidx, %tidx] : memref<256x32xf32>
%8 = arith.mulf %6, %alpha : 32

%9 = arith.addf %7, %8 : f32

memref.store %9, %y_dev[%bidx, %tidx] : memref<256x32xf32>

gpu.terminator

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

2. Compute 2D SAXPY kernel
@NVDSL .mlir_gpu_launch(grid=(M,1,1), block=(N,1,1))
def saxpy_kernel():

bidx = gpu.block_id(gpu.Dimension.x)

tidx = gpu.thread_id(gpu.Dimension.x)

x_val = memref.load(x_dev, [bidx, tidx])

y_val = memref.load(y_dev, [bidx, tidx])

y_val += x_val * alpha

memref.store(y_val, y dev, [bidx, tidx])

saxpy_kernel()

t7 = gpu.memcpy(token_ty, [t6], y, y_dev)
gpu.wait(token_ty, [t7])

22

Ch1.py: 2D SAXPY
Build GPU Kernel IR

Building IR with Py bindings

@NVDSL .mlir_func

def saxpy(x, y, alpha):

DSL overloads operators with arith.* dialect:

gpu.launch blocks(256,1,1) threads(32,
%bidx = gpu.block_id x
%tidx = gpu.thread_id x
%6 = memref.load %x_dev[%bidx, %tidx]
%7 = memref.load %y_dev[%bidx, %tidx]

1, 1) {

. memref<256x32xf32>
. memref<256x32xf32>

%8 = arith.mulf %6, %alpha : 32
%9 = arith.addf %7, %8 : f32

1. Use MLIR GPU dialect to allocate and copy memory
t1 = gpu.wait(token_ty, [])

x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], []1, [1])
y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [1)
t4 = gpu.memcpy(token_ty, [t3], x_dev, x)

t5

gpu.memcpy (token_ty, [t4], y_dev, y)
t6 = gpu.wait(token_ty, [t5])

2. Compute 2D SAXPY kernel
@NVDSL .mlir_gpu_launch(grid=(256,1,1), block=(32,1,1))
def saxpy_kernel():

bidx = gpu.block_id(gpu.Dimension.x)

tidx = gpu.thread_id(gpu.Dimension.x)

x_val = memref.load(x_dev, [bidx, tidx])

y_val = memref.load(y_dev, [bidx, tidx])

memref.store %9, %y_dev[%bidx, %tidx]

gpu.terminator

: memref<256x32x+32§:::::::::

y_val += x_val * alpha

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

memref.store(y_val, y dev, [bidx, tidx])

saxpy_kernel()

t7 = gpu.memcpy(token_ty, [t6], y, y_dev)
gpu.wait(token_ty, [t7])

23

Ch1.py: 2D SAXPY

Python calls MLIR func and pass parameters

Decorator (@NVDSL.m1ir_func):

Building IR with Py bindings

@NVDSL .mlir_func
def saxpy(x, y, alpha):
MLIR function body ...

numpy arrays -> memref <
JIT compiles

Executes

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

3. Pass numpy arrays to MLIR
alpha = 2.0

X = np.ones((256, 32), np.float32)
y = np.ones((256, 32), np.float32)
ref = np.ones((256, 32), np.float32)
saxpy(x, y, alpha)

4. Verify MLIR with reference computation

ref += x * alpha

np.testing.assert_allclose(y, ref, rtol=5e-03, atol=1e-01)
print("PASS")

CHECK-NOT: Mismatched elements

24

Ch1.py: 2D SAXPY

Python calls MLIR func and pass parameters

Decorator (@NVDSL.m1ir_func):

numpy arrays -> memref <
JIT compiles

Executes

Building IR with Py bindings

@NVDSL .mlir_func
def saxpy(x, y, alpha):
MLIR function body ...

3. Pass numpy arrays to MLIR
alpha = 2.0

X = np.ones((256, 32), np.float32)
y = np.ones((256, 32), np.float32)

ref = np.ones((256, 32), np.float32)

saxpy(x, y, alpha)

Verify the Result <

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

4. Verify MLIR with reference computation

ref += x * alpha

np.testing.assert_allclose(y, ref, rtol=5e-03, atol=1e-01)
print("PASS")

CHECK-NOT: Mismatched elements

25

Ch1.py: 2D SAXPY

Execute

$> python Chl.py
PASS

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

@NVDSL .mlir_func
def saxpy(x, y, alpha):
MLIR function body ...

3. Pass numpy arrays to MLIR
alpha = 2.0

X = np.ones((256, 32), np.float32)
y = np.ones((256, 32), np.float32)
ref = np.ones((256, 32), np.float32)
saxpy(x, y, alpha)

4. Verify MLIR with reference computation

ref += x * alpha

np.testing.assert_allclose(y, ref, rtol=5e-03, atol=1e-01)
print("PASS")

CHECK-NOT: Mismatched elements

26

Ch2.py: 2D SAXPY with TMA

Now let TMA load the data

Non-Regular Python code
def saxpy(y, x, alpha):

x_smem = # TMA loads ‘x’ <32xf32> to shared memory

TMA loads ‘y’ <32xf32> to shared memory

y_smem

for i in range(256):
for j in range(32):
y[i, j] = y_tma[i, j] + alpha * x_smem[i, j]

Let's use NVIDIA Hopper TMA to
load data

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

SM
ALU
Tensor Core
(Register File
TMA
D Shared Memory | L1 Cache
Load Memory Address Generation for a Tile

Read Memory

Googl@7

Ch2.py: 2D SAXPY with TMA

TMA OPs and TMA class in NVDSL

nvgpu.tma.create.descriptor

e Host calls the CUDA driver, it triggers the function

cuTensorMapEncodeTiled.

nvgpu.tma.prefetch
° Prefetch TMA descriptor to L1 cache

nvgpu.tma.async.load
° Loads 1D - 5D tile
e Supports predicated execution

° Lowered:

Building IR with Py bindings
class TMA: uilding IR with Py binding

def _ init_ (self, shape, memref_ty,
swizzle=nvgpu.TensorMapSwizzleKind.SWIZZLE_NONE,
12promo=nvgpu.TensorMapL2PromoKind.L2PROMO_NONE,
oob=nvgpu.TensorMapOOBKind.00B_ZERO,
interleave=nvgpu.TensorMapInterleaveKind.INTERLEAVE_NONE,
): # init ...

@property
def tensormap_descriptor_ty(self):
memref_str = f"memref<{self.tma_shape[0]}x{self.tma_shape[1]}, 3>"
parse_str = f"!Invgpu.tensormap.descriptor<tensor = {memref_str},swizzle = {self.swizzle},\
12promo = {self.l2promo},oob = {self.oob},interleave = {self.interleave}>"

return ir.Type.parse(parse_str)

def create_descriptor(self, device_ptr):
tma_descriptor_ty = self.tensormap_descriptor_ty
device_unranked_memref = memref.CastOp(ir.UnrankedMemRefType.get(
self.memref_ty.element_type,
self.memref_ty.memory_space), device_ptr)
self.tma_descriptor = nvgpu.TmaCreateDescriptorOp(tma_descriptor_ty,

device_unranked_memref,map(const, self.tma_shape))

nvvm.cp.async.bulk.tensor.shared.cluster.global gef prefetch(self, predicate=None):
P (> P)

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

nvgpu.tma_prefetch_descriptor(self.tma_descriptor, predicate=predicate)

def load(self, dest, mbarrier: Mbarriers, coords=[0, 0], predicate=None):
nvgpu.TmaAsyncLoadOp(dest,mbarrier.mbar_group_op,self.tma_descriptor,

coordinates=map(const, coords),mbarId=mbarrier.id_op, predicate=predicate,

28

class TMA: Building IR with Py bindings

. def __init_ (self, shape, memref_ty,
° t!
ChZopY. 2D S XPY Wlth TMA swizzle=nvgpu.TensorMapSwizzleKind.SWIZZLE_NONE,

TMA OPS and TMA CIass in NVDSL 12promo=nvgpu.TensorMapL2PromoKind.L2PROMO_NONE,

oob=nvgpu.TensorMapOOBKind.00B_ZERO,
interleave=nvgpu.TensorMapInterleaveKind.INTERLEAVE_NONE,

.): # init ...
nvgpu.tma.create.descriptor

° Host calls the CUDA driver, it triggers the function @property
def tensormap_descriptor_ty(self):

cuTensorMapEncodeTlled. memref_str = f"memref<{self.tma_shape[0]}x{self.tma_shape[1]}, 3>"

parse_str = f"Invgpu.tensormap.descriptor<tensor = {memref_str},swizzle = {self.swizzle},\

nvgpu .tma. pr‘efetCh 12promo = {self.l2promo},oob = {self.oob},interleave = {self.interleave}>"

return ir.Type.parse(parse_str)

° Prefetch TMA descriptor to L1 cache

def create_descriptor(self, device_ptr):

tma_descriptor_ty = self.tensormap_descriptor_ty

nvgpu.tma.async.load

device_unranked_memref = memref.CastOp(ir.UnrankedMemRefType.get(

° Loads 1D - 5D tile self.memref_ty.element_type,
self.memref_ty.memory_space), device_ptr)

¢ SUppOI’tS predlcated execution self.tma_descriptor = nvgpu.TmaCreateDescriptorOp(tma_descriptor_ty,

) Lowered: device_unranked_memref,map(const, self.tma_shape))

nvvm.cp.async.bulk.tensor.shared.cluster.global d¢f prefetch(self, predicate=None):

nvgpu.tma_prefetch_descriptor(self.tma_descriptor, predicate=predicate)
def load(self, dest, mbarrier: Mbarriers, coords=[@, 0], predicate=None):
nvgpu.TmaAsyncLoadOp(dest,mbarrier.mbar_group_op,self.tma_descriptor,

coordinates=map(const, coords),mbarId=mbarrier.id_op, predicate=predicate,

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect 29

Ch2.py: 2D SAXPY with TMA

TMA OPs and TMA class in NVDSL

nvgpu.tma.create.descriptor

e Host calls the CUDA driver, it triggers the function
cuTensorMapEncodeTiled.
nvgpu.tma.prefetch
° Prefetch TMA descriptor to L1 cache

nvgpu.tma.async.load

Loads 1D - 5D tile
Supports predicated execution

Lowered:
nvvm.cp.async.bulk.tensor.shared.cluster.global

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

class TMA: Building IR with Py bindings

def __init_ (self, shape, memref_ty,
swizzle=nvgpu.TensorMapSwizzleKind.SWIZZLE_NONE,
12promo=nvgpu.TensorMapL2PromoKind.L2PROMO_NONE,
oob=nvgpu.TensorMapOOBKind.00B_ZERO,
interleave=nvgpu.TensorMapInterleaveKind.INTERLEAVE_NONE,
): # init ...

@property
def tensormap_descriptor_ty(self):
memref_str = f"memref<{self.tma_shape[0]}x{self.tma_shape[1]}, 3>"
parse_str = f"Invgpu.tensormap.descriptor<tensor = {memref_str},swizzle = {self.swizzle},\
12promo = {self.l2promo},oob = {self.oob},interleave = {self.interleave}>"

return ir.Type.parse(parse_str)

def create_descriptor(self, device_ptr):
tma_descriptor_ty = self.tensormap_descriptor_ty
device_unranked_memref = memref.CastOp(ir.UnrankedMemRefType.get(
self.memref_ty.element_type,
self.memref_ty.memory_space), device_ptr)
self.tma_descriptor = nvgpu.TmaCreateDescriptorOp(tma_descriptor_ty,

device_unranked_memref,map(const, self.tma_shape))

def prefetch(self, predicate=None):

nvgpu.tma_prefetch_descriptor(self.tma_descriptor, predicate=predicate)

def load(self, dest, mbarrier: Mbarriers, coords=[@, 0], predicate=None):
nvgpu.TmaAsyncLoadOp(dest,mbarrier.mbar_group_op,self.tma_descriptor,

coordinates=map(const, coords),mbarId=mbarrier.id_op, predicate=predicate,

Ch2.py: 2D SAXPY with TMA

TMA OPs and TMA class in NVDSL

nvgpu.tma.create.descriptor
e Host calls the CUDA driver, it triggers the function

cuTensorMapEncodeTiled.

nvgpu.tma.prefetch
° Prefetch TMA descriptor to L1 cache

nvgpu.tma.async.load
° Loads 1D - 5D tile
e Supports predicated execution

° Lowered:
nvvm.cp.async.bulk.tensor.shared.cluster.global

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

class TMA: Building IR with Py bindings

def __init_ (self, shape, memref_ty,
swizzle=nvgpu.TensorMapSwizzleKind.SWIZZLE_NONE,
12promo=nvgpu.TensorMapL2PromoKind.L2PROMO_NONE,
oob=nvgpu.TensorMapOOBKind.00B_ZERO,
interleave=nvgpu.TensorMapInterleaveKind.INTERLEAVE_NONE,
): # init ...

@property
def tensormap_descriptor_ty(self):
memref_str = f"memref<{self.tma_shape[0]}x{self.tma_shape[1]}, 3>"
parse_str = f"Invgpu.tensormap.descriptor<tensor = {memref_str},swizzle = {self.swizzle},\
12promo = {self.l2promo},oob = {self.oob},interleave = {self.interleave}>"

return ir.Type.parse(parse_str)

def create_descriptor(self, device_ptr):
tma_descriptor_ty = self.tensormap_descriptor_ty
device_unranked_memref = memref.CastOp(ir.UnrankedMemRefType.get(
self.memref_ty.element_type,
self.memref_ty.memory_space), device_ptr)
self.tma_descriptor = nvgpu.TmaCreateDescriptorOp(tma_descriptor_ty,
device_unranked_memref,map(const, self.tma_shape))
def prefetch(self, predicate=None):

nvgpu.tma_prefetch_descriptor(self.tma_descriptor, predicate=predicate)

def load(self, dest, mbarrier: Mbarriers, coords=[0, ©], predicate=None):
nvgpu.TmaAsyncLoadOp (dest,mbarrier.mbar_group_op,self.tma_descriptor,

coordinates=map(const, coords),mbarId=mbarrier.id_op, predicate=predicate,

31

Building IR with Py bindings

ChZ.py: 2D SAXPY W|th TMA class Mbarriers:

Mbarrier OPs and Mbarrier class in NVDSL def _init_ (self, number of barriers=1):
self.mbar_ty = ...

self.number_of_barriers = number_of_barriers

nvgpu.mbarrier.create self.mbar_group_op = nvgpu.mbarrier_create(self.mbar_ty)
e Allows creating multiple mbarriers def __getitem__(self, key):

o . self.id_op = const(key)
o %mbarGroup = nvgpu.mbarrier.create <...,
return self

num_barriers = 7> def init(self, count: int, predicate=None):

count_op = const(count)
. nvgpu.mbarrier_init(self.mbar_group_op, count_op, self.id_op...
nvgpu.mbarrier.init | arrive | try wait

° Convenient access to mbarriers with SSA index. Ideal for def arrive(self, txcount: int = @, predicate=None):

handling multiple barriers within a loop if txcount != o:
txcount_op = const(txcount)

nvgpu.mbarrier_arrive_expect tx(
self.mbar_group op, txcount op, self.id op, predicate=predicate

o nvgpu.mbarrier.init %mbarGroup[%mbar_id]
° Provides support for predication
o nvgpu.mbarrier.expect_tx)

%mbarGroup[%mbar_id] predicate = %tidxe
def try wait(self, phase: bool = False, ticks: int = 10000000):

nvgpu.MBarrierTryWaitParityOp(...)

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Ch2.py: 2D SAXPY with TMA

Mbarrier OPs and Mbarrier class in NVDSL

Building IR with Py bindings

nvgpu.mbarrier.create
e Allows creating multiple mbarriers
o %mbarGroup = nvgpu.mbarrier.create <...,

num_barriers = 7>

class Mbarriers:

def __init__ (self, number_of_barriers=1):
self.mbar_ty = ...
self.number_of_barriers = number_of_barriers

self.mbar_group_op = nvgpu.mbarrier_ create(self.mbar_ty)

nvgpu.mbarrier.init | arrive | try wait
e Convenient access to mbarriers with SSA index. Ideal for
handling multiple barriers within a loop
o nvgpu.mbarrier.init %mbarGroup[%mbar_id]
° Provides support for predication
o nvgpu.mbarrier.expect_tx

%mbarGroup[%mbar_id] predicate = %tidxe

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

def _ getitem__(self, key):
self.id_op = const(key)
return self

def init(self, count: int, predicate=None):
count_op = const(count)

nvgpu.mbarrier_init(self.mbar_group op, count op, self.id_op...)

def arrive(self, txcount: int = @, predicate=None):
if txcount != 0:
txcount_op = const(txcount)

nvgpu.mbarrier_arrive_expect_ tx(

self.mbar_group_op, txcount_op, self.id_op, predicate=predicate

def try_wait(self, phase: bool = False, ticks: int = 10000000):

nvgpu.MBarrierTryWaitParityOp(...)

33

Ch2.py: 2D SAXPY with TMA

Mbarrier OPs and Mbarrier class in NVDSL

nvgpu.mbarrier.create
e Allows creating multiple mbarriers
o %mbarGroup = nvgpu.mbarrier.create <...,

num_barriers = 7>

Building IR with Py bindings

class Mbarriers:

def __init__ (self, number_of_barriers=1):
self.mbar_ty = ...
self.number_of_barriers = number_of_barriers

self.mbar_group_op = nvgpu.mbarrier_create(self.mbar_ty)

def _ getitem__(self, key):
self.id_op = const(key)

return self

nvgpu.mbarrier.init | arrive | try wait
e Convenient access to mbarriers with SSA index. Ideal for
handling multiple barriers within a loop
o nvgpu.mbarrier.init %mbarGroup[%mbar_id]
° Provides support for predication
o nvgpu.mbarrier.expect_tx

%mbarGroup[%mbar_id] predicate = %tidxe

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

def init(self, count: int, predicate=None):
count_op = const(count)

nvgpu.mbarrier_init(self.mbar_group op, count op, self.id op...

def arrive(self, txcount: int = @, predicate=None):
if txcount != 0:
txcount_op = const(txcount)
nvgpu.mbarrier_arrive_expect tx(
self.mbar_group_op, txcount op, self.id op, predicate=predicate
b}

def try wait(self, phase: bool = False, ticks: int = 10000000):
nvgpu.MBarrierTryWaitParityOp(...)

34

Ch2.py: 2D SAXPY with TMA

Start Building Host IR

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

@NVDSL.mlir_func

def saxpy_tma(x, y, alpha):
token_ty = ir.Type.parse("!gpu.async.token")
t1 = gpu.wait(token_ty, [])

x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], []1, [])

y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [])
t4
t5
t6

gpu.memcpy (token_ty, [t3], x_dev, Xx)

gpu.memcpy(token_ty, [t4], y_dev, y)
gpu.wait(token_ty, [t5])

x_tma = TMA((1,32), x.type)

TMA((1,32), y.type)

y_tma
x_tma.create_descriptor(x_dev)

y_tma.create_descriptor(y_dev)

@NVDSL.mlir_gpu_launch(grid=(M,1,1),block=(N,1,1), smem=256)
def saxpy_tma_kernel():
Kernel Body (next slides)

t7 = gpu.memcpy(token_ty, [t6], y, y_dev)
gpu.wait(token_ty, [t7])

35

Ch2.py: 2D SAXPY with TMA

Generated IR

Shared Memory

nvgpu.tma.async.load
‘ X_smem y_Ssem %_
<1x32xf32> <1x32xf32>
/ N
Global
— 32 — 32~ Memory
bidx=0 | bidx=0
nvgpu.tma.async.load -bi_ d;(: 1‘ -bi- d;(- 1‘ -
256 X 25 Y
R o T
R bidx=255 J ! bidx=255)

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

@NVDSL.mlir_func
def saxpy_tma(x, y, alpha):

token_ty = ir.Type.parse("!gpu.async.token")
t1 = gpu.wait(token_ty, [])
x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [], [1)

y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], []1, [1)

t4 = gpu.memcpy(token_ty, [t3], x_dev, x)
t5 = gpu.memcpy(token_ty, [t4], y_dev, y)
t6 = gpu.wait(token_ty, [t5])

x_tma = TMA(|(1,32)], x.type)
y_tma = TMA(|(1,32)], y.type)

x_tma.create_descriptor(x_dev)

y_tma.create_descriptor(y_dev)

@NVDSL.mlir_gpu_launch(grid=(M,1,1),block=(N,1,1),smem=256)
def saxpy_tma_kernel():
Kernel Body (next slides)

t7 = gpu.memcpy(token_ty, [t6], y, y_dev)

gpu.wait(token_ty, [t7])

36

Ch2.py: 2D SAXPY with TMA

Generated IR

%3 = nvgpu.tma.create.descriptor %x box[%cl, %c32]
: memref<*xf32>
-> <tensor = memref<1x32xf32, 3>,
swizzle = none,
12promo = none,
oob = zero,

interleave = none>

Building IR with Py bindings

@NVDSL.mlir_func
def saxpy_tma(x, y, alpha):
token_ty = ir.Type.parse("!gpu.async.token")
t1 = gpu.wait(token_ty, [])
x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [], [1)
y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], []1, [1)

t4 = gpu.memcpy(token_ty, [t3], x_dev, x)

t5

gpu.memcpy (token_ty, [t4], y_dev, y)
t6

gpu.wait(token_ty, [t5])

<

%4 = nvgpu.tma.create.descriptor %y box[%cl, %c32]
: memref<*xf32>

-> <tensor = memref<1x32xf32, 3>,

swizzle = none,
12promo = none,
oob = zero,

interleave = none>

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

x_tma = TMA((1,32), x.type)

y_tma = TMA((1,32), y.type)

x_tma.create_descriptor(x_dev)

y_tma.create_descriptor(y_dev)

@NVDSL.mlir_gpu_launch(grid=(M,1,1),block=(N,1,1),smem=256)

def saxpy_tma_kernel():
Kernel Body (next slides)

t7 = gpu.memcpy(token_ty, [t6], y, y_dev)
gpu.wait(token_ty, [t7])

37

Lowering nvgpu.tma.create.descriptor
Calls MLIR Runtime @mgpuTensorMapEncodeTiledMemref

%memref, %asyncToken = gpu.alloc async [%6] () : memref<256x32xf32>
%7 = gpu.memcpy async [%asyncToken_1] %memref, %argd : memref<256x32xf32>, memref<256x32xf32>

= nvgpu.tma.create.descriptor %x box[%cl, %c32]
%cast = memref.cast %memref : memref<256x32xf32> to memref<*xf32>

M *
: memref<*xf32> %9 = builtin.unrealized_conversion_cast %cast : memref<*xf32> to !llvm.struct<(i64, ptr)>
-> <tensor = memref<1x32xf32, 3>, %10 = 1llvm.mlir.constant(7 : i32) : i64
. %11 = llvm.extractvalue %9[0] : !llvm.struct<(i64, ptr)>
swizzle = none,

%12 = llvm.extractvalue %9[1] : !llvm.struct<(i64, ptr)>
12promo = none, %13 = 1llvm.mlir.constant(5 : i32) : i64
oob = zero, %14 = 1llvm.alloca %13 x i64 : (i64) -> !llvm.ptr
interleave = none> %15 = 1lvm.mlir.constant(0 : i32) : i64

%16 = llvm.getelementptr %14[%15] : (!1llvm.ptr, i64) -> !llvm.ptr, !llvm.ptr
1lvm.store %5, %16 : i64, !llvm.ptr

%17 = 1llvm.mlir.constant(1l : i32) : i64

%18 = llvm.getelementptr %14[%17] : (!1lvm.ptr, i64) -> !llvm.ptr, !llvm.ptr
1lvm.store %4, %18 : i64, !llvm.ptr

%19 = 1llvm.mlir.constant(@ : i32) : i64

%20 = llvm.mlir.constant(@ : i32) : i64

%21 = 1llvm.mlir.constant(@ : i32) : i64

%22 = 1lvm.mlir.constant(@ : i32) : i64

%23 = 1llvm.call @mgpuTensorMapEncodeTiledMemref (%11, %12, %10, %19, %20, %21, %22, %14) : (i64,

'1lvm.ptr, i64, i64, i64, i64, i64, !llvm.ptr) -> !llvm.ptr

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect 38

Inside @mgpuTensorMapEncodeTiledMemref
Calls CUDA driver cuTensorMapEncodeT1iled

extern "C" MLIR_CUDA WRAPPERS_EXPORT void mgpuTensorMapEncodeTiled(...) {

CUDA_REPORT_IF_ERROR(cuTensorMapEncodeTiled(tensorMap, tensorDataType, tensorRank, globalAddress,
globalDim, globalStrides, boxDim, elementStrides, interleave, swizzle, 12Promotion, oobFill)); CU DA driver Ca“
} \ o
generates TMA descriptor
extern "C" MLIR_CUDA WRAPPERS_EXPORT void *mgpuTensorMapEncodeTiledMemref(... (aka CUtensorMap *)

) |

CUtensorMap tensorMap;

mgpuTensorMapEncodeTiled(&tensorMap, tensorDataType, tensorRank32,globalAddress, globalDim,
globalStrides, boxDim, elementStrides, interleave, swizzle, 12Promotion, oobFill);

// Copy created tensor map to device

CUdeviceptr dTensorMap;

CUDA_REPORT_IF_ERROR(cuMemAlloc(&TensorMap, sizeof(CUtensorMap))); >CUMemA”OC & CUMemey

CUDA_REPORT_IF_ERROR(cuMemcpy(dTensorMap,

reinterpret_cast<CUdeviceptr>(&tensorMap),

sizeof(CUtensorMap)));

return reinterpret_cast<void *>(dTensorMap);

}

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect 39

Ch2.py: 2D SAXPY with TMA

Start Building GPU IR

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

@NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1), smem=sz_x_y)
def saxpy_tma_kernel():

bidx = gpu.block_id(gpu.Dimension.x)

tidx = gpu.thread_id(gpu.Dimension.x)

isThreado = tidx ==

1. Create and initialize asynchronous transactional barrier (mbarrier)
mbar_group = Mbarriers(number_of_barriers=1)

mbar_group[0].init(1, predicate=isThreado)

2. Execute Tensor Memory Accelerator (TMA) Load

x_smem = get_dynamic_shared_memory((1, N), T.f32())

y_smem = get_dynamic_shared_memory((1, N), T.f32(), offset=M * N * 2)
x_tma.load(x_smem, mbar_group[@], coords=[0, bidx], predicate=isThread®)
y_tma.load(y_smem, mbar_group[@], coords=[0, bidx], predicate=isThreado)

mbar_group[@].arrive(txcount=size_x + size_y, predicate=isThread®)

3. Wait for completion of TMA load with mbarrier
mbar_group[0].try_wait()

x_val = memref.load(x_smem, [0, tidx])

y_val = memref.load(y_smem, [0, tidx])

SAXPY: y[i] += a * x[i];
y_val += x_val * alpha

memref.store(y_val, y_dev, [bidx, tidx]) 110

Ch2.py: 2D SAXPY with TMA

Generated IR

gpu.launch blocks(256,1,1) threads(32,1,1) ... {
%bdimx = gpu.block id x

Building IR with Py bindings

%tidx = gpu.thread_id x <

%isThread@® = arith.cmpi eq, %thread_id_x, %c@ : index

// 1. Create and initialize mbarrier

%bar = nvgpu.mbar‘r‘ier‘.cr‘eate -> <memorySpace = #gpu.address_space<workgroup>>

@NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1), smem=sz_x_y)
def saxpy_tma_kernel():

bidx = gpu.block_id(gpu.Dimension.x)
tidx = gpu.thread_id(gpu.Dimension.x)

isThreado = tidx ==

1. Create and initialize asynchronous transactional barrier (mbarrier)

mbar_group = Mbarriers(number_of_barriers=1)

mbar_group[0].init(1, |predicate=isThreado)

nvgpu.mbarrier.init %bar[%c@], %cl,|predicate = %isThread®

: <memorySpace = #gpu.address_space<workgroup>>

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

2. Execute Tensor Memory Accelerator (TMA) Load

x_smem = get_dynamic_shared_memory((1, N), T.f32())

y_smem = get_dynamic_shared_memory((1, N), T.f32(), offset=M * N * 2)
x_tma.load(x_smem, mbar_group[@], coords=[0, bidx], predicate=isThread®)
y_tma.load(y_smem, mbar_group[@], coords=[0, bidx], predicate=isThread®)

mbar_group[@].arrive(txcount=size x + size_y, predicate=isThread®)

3. Wait for completion of TMA load with mbarrier
mbar_group[0].try_wait()

x_val = memref.load(x_smem, [0, tidx])
y_val = memref.load(y_smem, [0, tidx])
SAXPY: y[i] += a * x[i];

y_val += x_val * alpha

memref.store(y_val, y dev, [bidx, tidx])

41

Building IR with Py bindings

Chz pyo 2D SAXPY With TMA @NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1), smem=sz_x_y)

def saxpy_tma_kernel():
Generated IR bidx = gpu.block_id(gpu.Dimension.x)
tidx = gpu.thread_id(gpu.Dimension.x)
// 2. Execute Tensor Memory Accelerator (TMA) Load isThreado = tidx == @
%8 = gpu.dynamic_shared_memory : remretcixis, #gpu.address_spacecworkgroup>>
%x_smem = memref.view %8[HCOT[] : cucroms, spuasress spoccaorkgromss o remrereassusinn, sgpu.adiress spocecworkgroups» # 1. Create and initialize asynchronous transactional barrier (mbarrier)
%y_smem = memref.view %8[HCL28T[] : wucrns, mpuosress spacecmorkproumss to nemmerersonsntsz, sapu.asiress spocecworkgronp mbar_group = Mbarriers(number_of_ barriers=1)

mbar_group[0].init(1, predicate=isThread®)

nvgpu.tma.async.load %desc_x[%c@, %bidx], %bar[%c@] to %x_smem,

predicate = %isThread®@ # 2. Execute Tensor Memory Accelerator (TMA) Load

+ ctensor = menref<256x32xf32, 3>, swizzle = none, 12promo = none, oob = zero, interleave = nones, pace = #gpu.address_sp group>> -> me £32, #gpu.address_sp:

x_smem = get_dynamic_shared_memory((1, N), T.f32())

= t d i h d 1, N T.f32 ff =M * N * 2
nvgpu.tma.async.load %desc_y[%c@, %bidx], %bar[%c@] to %y_smem, y_smem = get_dynamic_shared_memory((1, N), 32(), offset)

x_tma.load(x_smem, mbar_group[@], coords=[0, bidx], predicate=isThread®)

predicate = %isThread®@
: ctensor = menref<2S6xaA32, 35, swizzls = nane, aproms = nons, oo = zera, interleave = nones, pace = ¥, sddvess_spacecorkgraups> <> , sepu. dress_sp . y_tma.load(y_smem, mbar_group[0], coords=[0, bidx], predicate=isThread®)

<:| mbar_group[@].arrive(txcount=size x + size y, predicate=isThreado)

nvgpu.mbarrier.arrive.expect_tx %bar[%c@],|%c256,

redicate = #isThread® # 3. Wait for completion of TMA load with mbarrier

= #gpu.address_sp:

mbar_group[0].try_wait()

x_val = memref.load(x_smem, [0, tidx])

y_val = memref.load(y_smem, [0, tidx])

Bytes expected to be loaded by TMA # SAXPY: y[i] += a * x[i];
txcount = sizeof(x + y) = 256byte y val += x_val * alpha

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect memref.store(y_val, y_dev, [bidx, tidx])

42

Ch2.py: 2D SAXPY with TMA

nvgpu.mbarrier.try wait.parity %bar[%c@], %false,

%C10000000 : <memorySpace = #gpu.address_space<workgroup>>

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

<\I

Building IR with Py bindings

@NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1), smem=sz_x_y)
def saxpy_tma_kernel():

bidx = gpu.block_id(gpu.Dimension.x)
tidx = gpu.thread_id(gpu.Dimension.x)
isThreadd = tidx == 0@

1. Create and initialize asynchronous transactional barrier (mbarrier)
mbar_group = Mbarriers(number_of_barriers=1)

mbar_group[0].init(1, predicate=isThreado)

2. Execute Tensor Memory Accelerator (TMA) Load

x_smem = get_dynamic_shared_memory((1, N), T.f32())

y_smem = get_dynamic_shared_memory((1, N), T.f32(), offset=M * N * 2)
x_tma.load(x_smem, mbar_group[@], coords=[0, bidx], predicate=isThread®)
y_tma.load(y_smem, mbar_group[@], coords=[0, bidx], predicate=isThread®)

mbar_group[@].arrive(txcount=size_x + size_y, predicate=isThreado)

3. All threads in CTA wait for completion of TMA load with mbarrier

mbar_group[0].try wait()

x_val = memref.load(x_smem, [0, tidx])
y_val = memref.load(y_smem, [0, tidx])
SAXPY: y[i] += a * x[i];

y_val += x_val * alpha

memref.store(y_val, y dev, [bidx, tidx]) ‘1:3

Ch2.py: 2D SAXPY with TMA

Computation is similar to Ch1.py

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

<\I

Building IR with Py bindings

@NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1), smem=sz_x_y)
def saxpy_tma_kernel():

bidx = gpu.block_id(gpu.Dimension.x)
tidx = gpu.thread_id(gpu.Dimension.x)
isThreadd = tidx == 0@

1. Create and initialize asynchronous transactional barrier (mbarrier)
mbar_group = Mbarriers(number_of_barriers=1)

mbar_group[0].init(1, predicate=isThreado)

2. Execute Tensor Memory Accelerator (TMA) Load

x_smem = get_dynamic_shared_memory((1, N), T.f32())

y_smem = get_dynamic_shared_memory((1, N), T.f32(), offset=M * N * 2)
x_tma.load(x_smem, mbar_group[@], coords=[0, bidx], predicate=isThread®)
y_tma.load(y_smem, mbar_group[@], coords=[0, bidx], predicate=isThread®)

mbar_group[@].arrive(txcount=size_x + size_y, predicate=isThreado)

3. Wait for completion of TMA load with mbarrier
mbar_group[0].try wait()

x_val = memref.load(x_smem, [0, tidx])

y_val = memref.load(y_smem, [0, tidx])

SAXPY: y[i] += a * x[i];
y_val += x_val * alpha

memref.store(y_val, y_dev, [bidx, tidx]) ‘111

Ch3.py: GEMM 128x128x64 with Tensor Core

def gemm_128x128x64(a, b, d):
a_smem, b_smem = tma_load()
for i in range(128):

for j in range(128):
for k in range(64):

d[i, j] += a_smem[i,k] * b_smem[k,7j]

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect 45

Ch3.py: GEMM 128x128x64 with Tensor Core

def gemm_128x128x64(a, b, d):

a_smem, b_smem = tma_load()

for i in range(128):
for j in range(128):
for k in range(64):

d[i, j] += a_smem[i,k] * b_smem[k,7j]

Launch 1 Thread Block (CTA)
Offload 128x128x64 GEMM to Tensor Core

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

46

Ch3.py: GEMM 128x128x64

Tensor Core OPs and class WGMMAMatrix in NVDSL

nvgpu.warpgroup.mma.init.accumulator

° Create and initialize registers (no need for a new op in nvvm)

nvgpu.warpgroup.generate.descriptor

° Generates 64-bit descriptor that keeps: Start Address, leading

dimension, stride, swizzle (no need for a new op in nvvm)

nvgpu.warpgroup.mma

° Use Tensor Core using following new ops in nvvm

nvvm.wgmma.fence.aligned
nvvm.wgmma.mma_async
nvvm.wgmma.commit.group.sync.aligned
nvvm.wgmma.wait.group.sync.aligned

nvgpu.warpgroup.mma.store

° Store fragmented registers to shared or global memory using

following nvvm operations
o nvvm.stmatrix
o vector.store

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

class WGMMAType(Enum):
Accumulator = 1

Descriptor = 2

class WGMMAMatrix:
def init_ (self, matrix_type: WGMMAType, shape: list = None,):...
def update_smem(self, smem):

self.smem = smem

def update_accumulator(self, acc_op):

self.acc_op = acc_op

def _ matmul__(self, rhs):

lhs = nvgpu.warpgroup_generate_descriptor(...)

rhs = nvgpu.warpgroup_generate_descriptor(...)

return [lhs, rhs]

def _ iadd__ (self, matmulResult):

return nvgpu.warpgroup_mma(self.acc_op.type, lhs, rhs, self.acc_op, ...

def store_accumulator(self):

nvgpu.warpgroup_mma_store(...)

47

Ch3.py: GEMM 128x128x64

Start Building Host IR

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

@NVDSL.mlir_func
def gemm_128 128 64(a, b, d):

tl = gpu.wait(token_ty, [])

a_dev, t2 = gpu.alloc(a.type, token_ty, [t1], [], [1)
b_dev, t3 = gpu.alloc(b.type, token_ty, [t2], [], [1])
d_dev, t4 = gpu.alloc(d.type, token_ty, [t3], []1, [])
t5 = gpu.memcpy(token_ty, [t4], a_dev, a)

t6 = gpu.memcpy(token_ty, [t5], b_dev, b)

t7 = gpu.wait(token_ty, [t6])

sw = nvgpu.TensorMapSwizzleKind.SWIZZLE_128B
a_tma = TMA([128, 64], a.type, swizzle=sw)
b_tma = TMA([64, 64], b.type, swizzle=sw)
a_tma.create_descriptor(a_dev)
b_tma.create_descriptor(b_dev)

sz = get_type_size(a.type) + get_type_size(b.type)

@NVDSL.mlir_gpu_launch(grid=(1, 1, 1), block=(128, 1, 1), smem=sz)
def gemm_tma_kernel():
Kernel Body

gemm_tma_kernel()

t8 = gpu.memcpy(token_ty, [t7], d, d_dev)
gpu.wait(None, [t8])

48

Building IR with Py bindings

Ch3.py: GEM M 128x128x64 @NVDSL.mlir_func

def gemm_128_128 64(a, b, d):

N=128 tl = gpu.wait(token_ty, [])
a_dev, t2 = gpu.alloc(a.type, token_ty, [t1], [], [])
bl b2 nvgpu.tma.async.load b_dev, t3 = gpu.alloc(b.type, token_ty, [t2], [], [])

Shared K=6 <64x64xf16><64x64xf16>: d_dev, t4 = gpu.alloc(d.type, token_ty, [t3], [], [])

Memory l t5 = gpu.memcpy(token_ty, [t4], a_dev, a)

1 t6 = gpu.memcpy(token_ty, [t5], b_dev, b)
K=64——» nvgpu.tma.async.load t7 = gpu.wait(token_ty, [t6])
SW = nvgpu.TensorMapSwizzleKind.SWIZZLE_128B
GIObaI a_tma = TMA([128, 64], a.type, swizzle=sw)

M=128 a Memory b_tma = TMA([64, 64], b.type, swizzle=sw)
a_tma.create_descriptor(a_dev)
b_tma.create_descriptor(b_dev)

¥ sz = get_type _size(a.type) + get type size(b.type)
A
@NVDSL.mlir_gpu_launch(grid=(1, 1, 1), block=(128, 1, 1), smem=sz)
A def gemm_tma_kernel():
nvgpu.tma.async.load | <1p8x64xf16> # Kernel Body
gemm_tma_kernel()
t8 = gpu.memcpy(token_ty, [t7], d, d_dev)
Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect gpu.wait(None, [t8])

49

Ch3.py: GEMM 128x128x64

Start Building GPU IR

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

@NVDSL.mlir_gpu_launch(grid=(1,1,1), Building IR with Py bindings

block=(128,1,1),smem=sz)

def gemm_tma_kernel():

tidx

= gpu.thread_id(gpu.Dimension.x)

isThreado = tidx ==

mbar_group = Mbarriers(number_of_barriers=1)

mbar_group[0].init(1, predicate=isThread®)

1. TMA Load for two input matrices

tma_load(mbar_group, a_tma, b_tma, isThread®)

2. All threads wait TMA load completion

mbar_group[0].try_wait()

a_smem = get _dynamic_shared_memory((128, 64), T.f16())

b_smem = get_dynamic_shared_memory((64, 128), T.f16(), offset=off_b)

#

N = 0N W >

o

Performs Tensor Core GEMM 128x128x64 by warpgroup
WGMMAMatrix (WGMMAType.Descriptor, [128, 64], desc=a_tma, a_smem)
WGMMAMatrix (WGMMAType.Descriptor, [64, 128], desc=b_tma, b_smem)
WGMMAMatrix (WGMMAType.Accumulator, shape=[128, 128], ty=T.f32())

Matrix Multiply
+= A @B

4.

Stores fragmented registers to global memory by warpgroup

.store_accumulator(d_dev) 50

@NVDSL.mlir_gpu_launch(grid=(1,1,1), Building IR with Py bindings

Ch3opy: GEMM 128X128X64 def gemm_tma_kernel(): plocke(n LD, smennen)

tidx = gpu.thread_id(gpu.Dimension.x)

gpu.launch blocks(1,1,1) threads(128,1,1) { isThreado = tidx ==
%tidx = gpu.thread_id x mbar_group = Mbarriers(number_of_barriers=1)
%isThread@ = arith.cmpi eq, %thread_id_x, %c@ : index mbar_group[@].init(1, predicate=isThread®)

<

%bar = nvgpu .mbarrier.create - <memorySpace = #gpu.address_space<workgroup>>

1. TMA Load for two input matrices

tma_load(mbar_group, a_tma, b_tma, @, @, isThreado)
nvgpu.mbarrier.init %bar[%c@], %cl, predicate = %isThread@

: <memorySpace = #gpu.address_space<workgroup>>

2. All threads wait TMA load completion

mbar_group[0].try_wait()

a_smem = get_dynamic_shared_memory((128, 64), T.f16())

b_smem = get_dynamic_shared_memory((64, 128), T.fl6(), offset=off_b)
3. Performs Tensor Core GEMM 128x128x64 by warpgroup

WGMMAMatrix (WGMMAType.Descriptor, [128, 64], desc=a_tma, a_smem)

WGMMAMatrix (WGMMAType.Descriptor, [64, 128], desc=b_tma, b_smem)
WGMMAMatrix (WGMMAType.Accumulator, shape=[128, 128], ty=T.f32())
Matrix Multiply

+= A @B

N0 = N W >
I

4. Stores fragmented registers to global memory by warpgroup

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect C.store_accumulator(d_dev) 51

@NVDSL.mlir_gpu_launch(grid=(1,1,1), Building IR with Py bindings

Ch3opy: GEMM 128X128X64 def gemm_tma_kernel(): e L ey

tidx = gpu.thread_id(gpu.Dimension.x)
isThreado = tidx ==
mbar_group = Mbarriers(number_of_barriers=1)

def tma_load(mbar_group:Mbarriers, a_tma:TMA, b_tma:TMA, slot, stage, pred): mbar_group[@].init(1, predicate=isThreade)

size_tma_a = get_type size(a_tma.tma_memref)
size tma_b = get type size(b_tma.tma_memref) # 1. TMA Load for two input matrices

ta_count = size tma_a + (size_tma_b * 2) tma_load(mbar_group, a_tma, b_tma, 8, 0, isThreade)

off_ b = size_tma_a

off_b2 = off_b + size tma_b

2. All threads wait TMA load completion

mbar_group[0].try wait
a_elem_ty = a_tma.tma_memref.element_type -8 pLe] y- O

b_elem ty = b_tma.tma_memref.element type a_smem = get_dynamic_shared_memory((128, 64), T.f16())

a = get_dynamic_shared_memory(a_tma.tma_memref.shape, a_elem_ty) b_smem = get_dynamic_shared_memory((64, 128), T.f16(), offset=off_b)

bl = get_dynamic_shared_memory(b_tma.tma_memref.shape, b_elem_ty, off_b) # 3. Performs Tensor Core GEMM 128x128x64 by warpgroup
b2 = get_dynamic_shared_memory(b_tma.tma_memref.shape, b_elem_ty, off_b2) A = WGMMAMatrix(WGMMAType.Descriptor, [128, 64], desc=a_tma, a_smem)
B = WGMMAMatrix (WGMMAType.Descriptor, [64, 128], desc=b_tma, b_smem)
mbar_group[slot].arrive(ta_count, predicate=pred) C = WGMMAMatrix(WGMMAType.Accumulator, shape=[128, 128], ty=T.f32())
dimN, dimM = partition_shape() . 5
Matrix Multiply
a_tma.load(a, mbar_group[slot], coords=[dimK , dimM], predicate=pred)
C+=A@8B
b_tma.load(bl, mbar_group[slot], coords=[dimN , dimK], predicate=pred) @

b_tma.load(b2, mbar_group[slot], coords=[dimN + 64, dimK], predicate=pred)
4. Stores fragmented registers to global memory by warpgroup

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect C.store_accumulator(d_dev) 52

Ch3.py: GEMM 128x128x64

def tma_load(mbar_group:Mbarriers, a_tma:TMA, b_tma:TMA, slot, stage, pred):
size_tma_a = get_type size(a_tma.tma_memref)
size_tma_b = get type size(b_tma.tma_memref)

ta_count = size_tma_a + (size_tma_b * 2)

off_ b = size_tma_a

off_b2 = off_b + size tma_b

a_elem_ty = a_tma.tma_memref.element_type

b_elem_ty = b_tma.tma_memref.element_type

a = get_dynamic_shared_memory(a_tma.tma_memref.shape, a_elem_ty)
bl
b2

get_dynamic_shared_memory(b_tma.tma_memref.shape, b_elem_ty, off_b

get_dynamic_shared_memory(b_tma.tma_memref.shape, b_elem_ty, off_b2)

mbar_group[slot].arrive(ta_count, predicate=pred)
dimN, dimM = partition_shape()

a_tma.load(a, mbar_group[slot], coords=[dimK , dimM

b_tma.load(bl, mbar_group[slot], coords=[dimN , dimK], icate=pred)

Shared
Memory

M=128 a

K=6 <
l <64x64xf16>|<64x64xf16>

y
A nvgpu.tma.asyndload

K=64——»

N=128

bl

b2

nvgpu.tma.async.load

predicate=pred)

\

Global
Memory

A

nvgpu.tma.

b_tma.load(b2, mbar_group[slot], coords=[dimN + 64, dimK], ‘:’dicate=pred)

ync.load

<1P8x64xf16>

)

B
<64x128xf16>

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

4

53

Ch3.py: GEMM 128x128x64

%A = nvgpu.warpgroup.generate.descriptor %view, %3

memref<128x64xf16, ...>,

%B = nvgpu.warpgroup.generate.descriptor %view_5, %4

memref<64x128xf16, ...>,

%C = nvgpu.warpgroup.mma.init.accumulator

-> <fragmented = vector<128x128xf32>>

%D = nvgpu.warpgroup.mma %10, %11, %9 {transposeB}
<tensor = memref<128x64xf16, ...>>,

<tensor = memref<64x128xf16, ...>>,

@NVDSL.mlir_gpu_launch(grid=(1,1,1), Building IR with Py bindings

def

block=(128,1,1),smem=sz)

gemm_tma_kernel():

tidx = gpu.thread_id(gpu.Dimension.x)

isThreado = tidx ==

mbar_group = Mbarriers(number_of_barriers=1)

mbar_group[0].init(1, predicate=isThread®)

#

1. TMA Load for two input matrices

tma_load(mbar_group, a_tma, b_tma, isThread®)

#

2. All threads wait TMA load completion

mbar_group[@].try wait()

a_

smem = get_dynamic_shared_memory((128, 64), T.f16())

<fragmented = vector<128x128xf32>> ¢
-> <fragmented = vector<128x128xf32>>

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

b_smem = get_dynamic_shared_memory((64, 128), T.f16(), offset=off_b)
3. Initialize 2 Input Matrices and Accumulator

A = WGMMAMatrix(WGMMAType.Descriptor, [128 ,64], desc=a_tma, a_smem
B = WGMMAMatrix (WGMMAType.Descriptor, [64, 128], desc=b_tma, b_smem
C = WGMMAMatrix(WGMMAType.Accumulator, shape=[128, 128], ty=T.f32()
Matrix Multiply

C+=A@8B

4. Stores fragmented registers to global memory by warpgroup

.store_accumulator(d_dev) 54

Go Deeper nvgpu.warpgroup.mma — nvvm/PTX
128x128x64 — 8 times 64x128x16 (supported tensor core shape)

// Initialize input matrix: 2x64xf32 Registers
%r =0 : lllvm.struct<(...)>

// 8 x wgmma.mma_async.m64n128k16 PTX instruction

nvvm.wgmma.fence.aligned

= nvvm.wgmma.mma_async %dA, %dB, %r[0], <m=64, n=128, k=16>
%W2 = nvvm.wgmma.mma_async %dA+2, %dB+128, <m=64, n=128, k=16>
%wW3 = nvvm.wgmma.mma_async %dA+4, %dB+256, %W2 , <m=64, n=128, k=16>
%w4A = nvvm.wgmma.mma_async %dA+6, %dB+384, %W3, <m=64, n=128, k=16> R S S i (8 o .

%W5 = nvvm.wgmma.mma_async %dA+512, %dB, , %r[1], <m=64, n=128, k=16>
%wW6 = nvvm.wgmma.mma_async %dA+514, %dB+128, %W5 , <m=64, n=128, k=16>
%W7 = nvvm.wgmma.mma_async %dA+516, %dB+256, %W6 , <m=64, n=128, k=16> =6
%w8 = nvvm.wgmma.mma_async %dA+518, %dB+384, %7 , <m=64, n=128, k=16>

nvvm.wgmma.commit.group.sync.aligned \/

nvvm.wgmma.wait.group.sync.aligned 1

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

N=128

K=16

A\

|

D S e)

N=128

v

M=64

Ch3.py: GEMM 128x128x64

RC| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 N8 N7 N-6 N5 N4 N3 N2 N1
0 | Toqdo,d1) Tifdo,d1) Td0,d1}) T3{d0,d1} | TO:fds,dS) Tiddd,dS) Tfda,ds) T3:(dd,ds) TO:{dX,dv) TL:{dX.dY} T2:{dX,dY} T3:{dx,dv}
1| Tafdo,d1) TS:do,d1) Teddo,d1} T7:do,d1) | Tafdd,ds) TS:da,dS) Teddd,ds} T7:(d4,ds) Ta:(dx,dv) T:{dXdY} Te:{dX,dY) T7:(dx,dY)
¥ T28:{d0, d1} T29:{do, d1} T30:{do, d1} T31:{do, d1} T28:{d4, dS} T29:{d4, dS) T30:{d4, dS} T31:{d4, d5} T28:{dX,dY} T29:{dX,dY} T30:{dX,dY} T31:{dX,dY}
8 | Todd2,d3) Tifd2,d3) T2d2,d3) T3{d2,d3) | To:fds,d7) Tidde,d7) Tufde,d7) T3:{de,d7) TOAdZ, dW) TL{dZ dW) T2{dZ W) T3:{dz dw}
15 | To8:d2,d3) T2%:{d2,d3) T30:(d2,d3) T3aL:{d2,d3) | T2B:{de,d7) T29:d6,d7) T30:fde,d7) T3idde, d7} T28dZ, AW} T29:{dZ, dW) T30:fdZ dW) T31:{dZ dw)
16 | T32:d0,d1} T33:{d0,d1} T34:d0,d1} T35:d0,d1} | T3:fda, dS} T33(d4,d5) T34dd,dS) T35:d4, dS} T32dX, dv} T33:dX, v} T34ddX,dv) T3SHdX, dv)
31 | Teo:{d2,d3) T6l:{d2,d3) Te2:d2,d3) Te3:{d2,d3} | TeO:ds,d7) Teldde,d7) Te2:ds,d7) T63:(d6, d7) ToO:{dZ AW} TEL:(dz, W) Te:{dz dW) T63:(dZ, dw}
32 | T64:{do, d1} T65:{d, d1} T66:{d0, d1} T67:{do, d1} T64:{d4, d5} T65:{d4, dS} T66:{d4, d5} T67:{d4, d5} T64:{dX, dv} T65:{dX, dY} T66:{dX, dY} T67:{dX, dv}
a7 | T92:d2,d3) T9%{d2,d3} T94:d2,d3} T95:d2,d3} | TO2fde, d7) T93:{de,d7} TO4ds, d7) TOS:{de, d7) TO2(dZ, AW} TO3:{dz W} T94dZ dW) TOS:{dZ dw}
48 | T196:{do, d1} T97:{do, d1} T98:{do, d1} T99:{do, d1} T96:{d4, d5} T97:{d4, dS} T98:{d4, d5} T99:{d4, d5} T96:{dX, dY} T97:{dX, dv} T98:{dX, dY} T99:{dX, dv}
63 | T124:{d2,d3} T125:{d2,d3} T126:{d2,d3} T127:{d2,d3} | T124:{d6,d7} T125:{d6,d7} T126:{d6, d7} T127:{d6, d7} T124:{dz, dW} T125:{dZ, dW} T126:{dZ, dW} T127:{dZ, dW}

(tid % 128) : fragments

nvgpu.warpgroup.mma.store 3%C,

<fragmented =

to memref<o04xo04xf32>

Smemref :

vector<64x6d4xfl32>>

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

@NVDSL.mlir_gpu_launch(grid=(1,1,1),

Building IR with Py bindings
block=(128,1,1),smem=sz)

def gemm_tma_kernel():

tidx =

gpu.thread_id(gpu.Dimension.x)

isThreado = tidx ==

mbar_group = Mbarriers(number_of_barriers=1)

mbar_group[0].init(1, predicate=isThread9)

#

1. TMA Load for two input matrices

tma_load(mbar_group, a_tma, b_tma, isThreado)

#

2. All threads wait TMA load completion

mbar_group[0].try_wait()

a_

b_

#
A

B
C
#

O

smem = get_dynamic_shared_memory((M, K), T.f16())

smem = get_dynamic_shared_memory((K, N), T.f16(), offset=off_b)
3. Initialize 2 Input Matrices and Accumulator

= WGMMAMatrix(WGMMAType.Descriptor, [M,K], desc=a_tma, a_smem)
= WGMMAMatrix (WGMMAType.Descriptor, [K,N], desc=b_tma, b_smem)
= WGMMAMatrix(WGMMAType.Accumulator, shape=[M,N], ty=T.f32())
Matrix Multiply

+= A @B

#

Co

4. Stores fragmented registers to global memory by warpgroup

store_accumulator(d_dev)

56

Ch3.py: GEMM 128x128x64 | want Performance

What about the performance?

r— " —_———-—— — — —
Iteration
¥ |

<
k:
o INIT TMA Arrive
=

TMA] MMA Epilogue
- 128x128
3 WAIT 128x128x64
o
g
S

[Prologue] [Main Loop] | | | [Epilogue]

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

S57

Ch4.py: Multistage GEMM

Shape = MxNxK, Tile = 128x128x64

Overlap Tensor Core and Data Load (TMA)

Shared Memory Slots (Size of slot = Tile-A + Tile-B)

[0] 1 o2
c c S0
% 5 25 &5
- & N = -
- - \/-}\
Ll T L]
9
kS INT . :
o TMA | Arrive TMA | Arrive TMA | Arrive
F [0.1,2]

TMA I MMA TMA | MMA Epilogue|
= WAIT || 128x128x64 WAIT || 128x128x64 128x128
8
5}

g
s J
[Prologue] [Main Loop] [Epilogue]

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect GOOgl%S

Ch4.py: Multistage GEMM

Shape = MxNxK, Tile = 128x128x64

Shared Memory Slots (Size of slot = Tile-A + Tile-B)

—

~

@NVDSL.mlir_gpu_launch(grid=grid,block=block,smem=...)

Building IR with Py bindings

def gemm_multistage_kernel():

mbar_group = init(x_tma, y_tma)

prologue(mbar_group, x_tma, y_tma)

D = mainloop(mbar_group, x_tma, y_tma)

epilogue(D, z_dev)

[l (1] Y-
< = 5 &
2 2 8=
" = & §5
a e Se x =
V- N/ \/-M
L) T L]
e
K INT X . .
o TMA | Arrive TMA | Arrive TMA | Arrive
=
e T™MA MMA TMA MMA
\,_/ WAIT || 128x128x64 \O WAIT || 128x128x64
3
o
2
E
[Prologue] [Main Loop] [Epilogue]

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

59

Building IR with Py bindings

Ch4.py: Multistage GEMM

def prologue(mbar_group: Mbarriers,
Prologue

a_tma: TMA, b_tma: TMA):

for iv in scf.for_(@, NUM_STAGES-1, 1):
tma_load(mbar_group, a_tma, b_tma, iv, iv)
scf.yield ([])

Shared Memory Slots (Size of slot = Tile-A + Tile-B)

[0] [1] o 2
c c)
% 5 25 5 5
- = Se o=
- - \/-}\
L) T]
9
kS INT . :
o TMA | Arrive TMA | Arrive TMA | Arrive
F [0,1,2]
’ TMA
| MMA TMA | MMA Epilogue|__
. WAIT || 128x128x64 WAIT || 128x128x64 e
8
5}
g
2)
[Prologue] [Main Loop] [Epilogue]

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect 60

Building IR with Py bindings

Ch4.py: Multistage GEMM

Mainloop

def mainloop(x,y,z):
for ti in range(M//128): # -> blockIdx.x
for tj in range(N//128): # -> blockIdx.y
D =20
for tk in range(K//64):
for i in range(128):
for j in range(128):
for k in range(64):

D += # mma

z(ti:ti:128, tj:tj:128) =D

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

61

Ch4.py: Multistage GEMM

Mainloop

def mainloop(x,y,z):
for ti in range(M//128): # -> blockIdx.x
for tj in range(N//128): # -> blockIdx.y
D =20
for tk in range(K//64):| Need a Loop
for i in range(128):
for j in range(128): Tensor Core
for k in range(64): | 128x128x64

D += # mma

z(ti:ti:128, tj:tj:128) =D

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

62

Building IR with Py bindings

Ch4.py: Multistage GEMM

. def mainloop(mbar_group: Mbarriers, x_tma: TMA tma: TMA):
Mainloop p(_group s X s Y)

ns = NUM_STAGES if NUM_STAGES == 1 else NUM_STAGES - 1
tidx = gpu.thread_id(gpu.Dimension.x)

A begin_y = NUM_STAGES * get type size(x_tma.tma_memref)
def mainloop(x,y,z): size x = TILE_M * TILE_K * get_type size(T.f16())
for ti in range(M//128): # -> blockIdx.x

for tj in range(N//128): # -> blockIdx.y i © cetsiiEes, WeTbeal()

A = WGMMAMatrix(WGMMAType.Descriptor, [TILE_M, TILE_K], desc=a_tma)
D =20 B = WGMMAMatrix(WGMMAType.Descriptor, [TILE_K, TILE_N], desc=b_tma)
for tk in r‘ange(K//64): D = WGMMAMatrix(WGMMAType.Accumulator, [TILE_M, TILE_N], ty=T.f32()]
for i in range(128): # Main Loop
for J in range(128): for_op = scf.ForOp(conist(0), const(K // TILE_K), const(1l),

[D.acc_op, pp])
with ir.InsertionPoint(for_op.body):

for k in range(64):

D += # mma # Main Loop BODY
scf.yield_([D.acc_op, newPP])

z(ti:ti:128, tj:tj:128) =D nvvm.WgmmaWaitGroupSyncOp (@)

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect return D 63

with ir.InsertionPoint(for_op.body): Building IR with Py bindings
o phase = for_op.inner_iter_args[1]
Ch4’py: MUItIStage GEMM iv = for_op.induction_variable
Mainloop stage = iv % NUM_STAGES
Wait for the current stage
mbar_group[stage].try wait(phase=phase)
offX = stage * size_a
offY = offset_a + begin_b
a_smem = get_dynamic_shared_memory([TILE_M, TILE_K], T.f16(), offX)
b_smem = get_dynamic_shared_memory([TILE_K, TILE_N], T.f16(), offY)
Iterate input matrices, update accumulator
Start BUIldIng Mainloop IR .update_smem(a_smem)
.update_smem(b_smem)
.update_accumulator(for_op.inner_iter_args[90])
Matrix Multiply
+= A @B

¥ O # O W >

Load next stage

pred = ((iv + ns) < const(K // TILE K)) & (tidx == 0)
nextSlot = (iv + ns) % NUM_STAGES

tma_load(mbar_group, a_tma, b_tma, nextSlot, (iv + ns), pred)
Switch phase parity for the mbarrier

newPhase = arith.select(stage == (NUM_STAGES - 1),

(phase ~ const(True, ty=T.bool())), phase,)

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect sc-F.yield_([D.acc_op, newPhase]) 64

with ir.InsertionPoint(for_op.body): Building IR with Py bindings
phase = for_op.inner_iter_args[1]

Ch4.py: Multistage GEMM

Mainloop stage = iv % NUM_STAGES
Wait for the current stage

iv = for_op.induction_variable

mbar_group[stage].try_ wait(phase=phase)

<:| offX = stage * size_a

%13 = arith.remui %argl5, %c3 : index offY = offset_a + begin b
a_smem = get_dynamic_shared_memory([TILE_M, TILE_K], T.f16(), offX)

b_smem = get_dynamic_shared_memory([TILE_K, TILE_N], T.fl6(), offY)

nvgpu.mbarrier.try wait.parity %6[%13], %argl7, %ticks

Iterate input matrices, update accumulator
.update_smem(a_smem)

.update_smem(b_smem)
.update_accumulator(for_op.inner_iter_args[0])
Matrix Multiply

+= A @B

¥ O # O w >

Load next stage

pred = ((iv + ns) < const(K // TILE_K)) & (tidx == 0)
nextSlot = (iv + ns) % NUM_STAGES

tma_load(mbar_group, a_tma, b_tma, nextSlot, (iv + ns), pred)
Switch phase parity for the mbarrier

newPhase = arith.select(stage == (NUM_STAGES - 1),

(phase ~ const(True, ty=T.bool())), phase,)
Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect scf.yield ([D acc_op newPhase]) 65
. L . _op,

%A

%B

%D

Ch4.py: Multistage GEMM

Mainloop

nvgpu.warpgroup.generate.descriptor %x, %3

: memref<128x64xf16, >

nvgpu.warpgroup.generate.descriptor %y, %4

: memref<64x128xf16,>

= nvgpu.warpgroup.mma %A, %B, %C {transposeB}
<tensor = memref<128x64xfl6 ,...>>,
<tensor = memref<64x128xfl6 ,...>>,

<fragmented = vector<128x128xf32>>
-> <fragmented = vector<128x128xf32>>

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

with ir.InsertionPoint(for_op.body):

Building IR with Py bindings
phase = for_op.inner_iter_args[1]
iv = for_op.induction_variable
stage = iv % NUM_STAGES

Wait for the current stage
mbar_group[stage].try_wait(phase=phase)
offX =

offY =

stage * size_a
offset_a + begin_b
a_smem = get_dynamic_shared_memory([TILE_M, TILE_K], T.fl6(), offX)

b_smem = get_dynamic_shared_memory([TILE_K, TILE_N], T.fl6(), offY)

—

Iterate input matrices, update accumulator
.update_smem(a_smem)

.update_smem(b_smem)
.update_accumulator(for_op.inner_iter_args[90])
Matrix Multiply

+= A@B

##|O # U w >

Load next stage
pred = ((iv + ns) < const(K // TILE_K)) & (tidx == 0)
nextSlot = (iv + ns) % NUM_STAGES
tma_load(mbar_group, a_tma, b_tma, nextSlot, (iv + ns), pred)
Switch phase parity for the mbarrier
newPhase = arith.select(stage == (NUM_STAGES - 1),

(phase ~ const(True, ty=T.bool())), phase,)
scf.yield ([D.acc_op, newPhase])

66

Shared Memory Slots (Size of slot = Tile-A + Tile-B)

Ch4.py: Multistage GEMM

Mainloop

with ir.InsertionPoint(for_op.body):

[0] [28
< H £0
£ £ g2
< I -
- - £ T o
ig iz €2
/’ /’ \/—dA\—\
f “—f
°
E INT . .
9 TMA | Arrive TMA | Arrive TMA | Arrive
£
| L ™A MMA TMA MMA
. WAIT (| 128x128x64 WAIT || 128x128x64 128"128
3
a
2
] -
[Prologue] [Main Loop] [Epllogue]

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings
phase = for_op.inner_iter_args[1]
iv = for_op.induction_variable
stage = iv % NUM_STAGES
Wait for the current stage
mbar_group[stage].try_wait(phase=phase)
offX = stage * size_a
offY = offset_a + begin_b
a_smem = get_dynamic_shared_memory([TILE_M, TILE_K], T.f16(), offX)
b_smem = get_dynamic_shared_memory([TILE_K, TILE_N], T.fl6(), offY)
Iterate input matrices, update accumulator

.update_smem(a_smem)

.update_smem(b_smem)

.update_accumulator(for_op.inner_iter_args[0])

+= A @B

A
B
D
Matrix Multiply
D
#

Load next stage
pred = ((iv + ns) < const(K // TILE K)) & (tidx == 0)
nextSlot = (iv + ns) % NUM_STAGES

tma_load(mbar_group, a_tma, b_tma, nextSlot, (iv + ns), pred)

Switch phase parity for the mbarrier
newPhase = arith.select(stage == (NUM_STAGES - 1),
(phase ~ const(True, ty=T.bool())), phase,)
scf.yield ([D.acc_op, newPhase]) 67

Building IR with Py bindings
. def epilogue(D: WGMMAMatrix, d_dev):
h4.py: Multi -
C ’pY‘ u t Stage GEMM tidx = gpu.thread_id(gpu.Dimension.x)
Epilogue dimX, dimY = partition_shape()
d_smem = get _dynamic_shared_memory([TILE_M, TILE_N], T.f32())
d_gmem = memref.subview(d_dev,[dimX, dimY],[TILE_M,TILE_N],[1, 1])

Steps:

1. Stores registers -> shared memory D.store_accumulator (d_smem)

gpu.barrier()

Store (registers -> shared memory)

Store (shared memory --> global memory)
for i in scf.for_(0, TILE M, 1):

val = memref.load(d_smem, [i, tidx])
2. Store shared memory tile -> global memory memref.store(val, d_gmem, [i, tidx])
scf.yield ([])

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect 68

Google Research

Performance of Ch4.py

Single Stage vs Multi Stage

Benchmark
Effect of Multistage vs Single Stage

K=128 K =256

Shape: (K varies)
® 7296 X 256 X K 100 100

TFLOPs
o
S

Operation:
[) F32+:F16*F16 N8 s Rk o A PNy 5 ° 4

C - N G &
P P o P P o P &P o o &P o o o

TFLOPs
133
o =}
Q E
6\
o
[t
4
[
pS

Tile Size:
e 128x128x64 K = 1024 K = 4096

400 400
300 300
» 200 » 200
o o
S 9
E 100 100
0 0
NN e o A Ny LN o o A

2 2
0"0 0% 09 Q/% 09 0% 0’3 @g Q}‘" @% 0{0 @9 ?/6 Qe
o P o o & o o o & o o

A M A A

o

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

70

Google Research

Ch4.py vs NVIDIA cuBLAS

cuBLAS vs MLIR

|

T e e T e T e e e

L e e e e
T T e e e e e e

= NVIDIA cuBLAS x Ch4.py

|

200 +

0

|

T
o
o
<

800 +
600 +

00LH uo sdoj41

F16*F16

128 x 128 x 64
Multistage Kernel

F32 +=

Operation
([

Tile Size
Ch4.py

72

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Ch5.py: Warp Specialized GEMM

1Producer + 1 Consumer Warpgroups

Thread Block has 2 Warpgroups (256 threads):

1. Producer Warpgroup — Performs TMA
2. Consumer Warpgroup — Performs Tensor Core

Shared Memory Slots (Size of slot = Tile-A + Tile-B)

B

Thread-0

TMA

TMA

WarpGroup
Producer

INIT I

[0,1,2]

MMA

MMA
128x128x64

128x128x64

WarpGroup
Consumer

[Main Loop]
|

Epilogue
128x128

[Epilogue]

Goog|e73

def gemm_warp_specialized_kernel(): Building IR with Py bindings

Ch50py: Warp SpeC|aI|Zed GEMM wg_producer = Warpgroup(primaryThread = 128, regSize = 40)

wg_consumer = Warpgroup(primaryThread = 0, regSize = 232)

1Producer +1Consumer Warpgroups mbar_group_mma, mbar_group_tma = bootstrap(a_tma, b_tma)

Producer performs TMA

with wg_producer:

. producer_loop(mbar_group_tma, mbar_group_mma,

a_tma,b_tma, wg_producer)

Consumer performs MMA/Tensor Core

. with wg_consumer:
Shared Memory Slots (Size of slot = Tile-A + Tile-B) -

D = consumer_loop(mbar_group_tma, mbar_group_mma,

[0] [1] a_tma,b_tma, wg_consumer)

epilogue(D, d_dev)

TMA TMA

Thread-0
-
=
>

S

MMA
128x128x64

WarpGroup
Producer

INIT I

[0,1,2]

[MMA ’
128x128x64

_ Epilogue

128x128

WarpGroup
Consumer

[Main Loop]

[Epilogue] 7 4

Ch4.py vs Ch5.py

Ch5.py

~ NVIDIA cuBLAS x Chd.py

Operation

F32+=F16*F16

Tile Size

I

1
o
o
<

00LH uo sdoj4]

128 x 128 x 64
Multistage Kernel

Ch4.py
(]

Warp Specialized

Ch5.py
(]

75

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Google Research

What is next?

Ché.py: Warp Specialized Persistent Ping-Pong GEMM (WIP)

1 Producer and 2 Consumers Warpgroups

Thread Block has 3 Warpgroups (384 threads):

Consumers Warpgroups

MMA «—— Epilogue

LOAD TMA

WarpGroup
Producer

MMA

(b MxNXK

WarpGroup
Consumer-1

[0,1,2] |

MMA
MxNxK

EPILOGUE

MMA
MxNxK

EPILOGUE

WarpGroup
Consumer-2

[Main Loop] I

- e | e o - -

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Google77

Use MLIR’s NVGPU Dialect with Python

NVGPU and NVVM Dialects
@ Hopper GPU Support

Unlocking Hopper's Power: MLIR's Python Binding
Seamlessly Express Multistage and Warp Specialization!

Peak performance

5’ Achieve cuBLAS-Level performance

Targeting NVIDIA Hopper in MLIR

Python bindings

MLIR

NVGPU : nvgpu. tma.load, nvgpu.warpgroup.mma, ... }

NVVM : cp.async.bulk, wgmma.mma_async, ...

|

LLVM

PTX

78

Google Research

P79

MLIR Upstream Dialect Layers
What happens after NVVM Dialect?

Python bindings

MLIR

NVGPU : nvgpu. tma.load, nvgpu.warpgroup.mma, ...

NVVM : cp.async.bulk, wgmma.mma_async, ...

Today we will program
e Python — NVGPU — NVVM

BasicPtxBuilder

Targeting NVIDIA Hopper in MLIR

LLVM doesn't have P o
Hopper intrinsics ;Z

BasicPtxBuilder generates
inline assembly

80

https://emojipedia.org/pensive-face

New Interface:
BasicPtxBuilder

Builds PTX automatically (no C++ need)

Generates register constraints:

"h" = .ul6 reg
"r" = .u32 reg
"1" = .u64 reg
etc.

Generates read/write

"r'(y) read
"+r"(y) readwrite
"=r"(y) write

Supports predicates
@%p opcode

Targeting NVIDIA Hopper in MLIR

def NVVM MBarrierArriveExpectTxOp : NVVM Op<"mbarrier.arrive.expect tx",

[DeclareOpInterfaceMethods<BasicPtxBuilderOpInterface>]>

Arguments<(ins LLVM i64ptr any:$addr, I32:$txcount, PtxPredicate:Spredicate)> {

Predicate is automatically placed

let assemblyFormat =

"Saddr °, S$txcount (', “predicate’ "= S$predicate”)? attr-dict :° type (operands)" ;

let extraClassDefinition = [{
std: :string $cppClass::getPtx() {
return std::string("mbarrier.arrive.expect tx.b64 , [80], %1;"); }
|3

} . . Arguments are placed
PTX instruction g . P
automatically

81

