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A big thank you to 
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Huang’s Law  [1, 2]
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[1] https://en.wikipedia.org/wiki/Huang%27s_law
[2] Hardware for Deep Learning, Bill Dally, HotChips

3

https://en.wikipedia.org/wiki/Huang%27s_law


Huang’s Law  [1, 2]

Zero to Hero: Programming  Nvidia Tensor Core with MLIR NVGPU Dialect

[1] https://en.wikipedia.org/wiki/Huang%27s_law
[2] Hardware for Deep Learning, Bill Dally, HotChips

4

https://en.wikipedia.org/wiki/Huang%27s_law


Evolution in Hardware: 
NVIDIA Hopper Architecture
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4th gen Tensor Core
● Warpgroup level (128 threads) PTX instructions 
● Matrix A or B can be shared memory or registers
● Supports transpose for f16

Thread Block Clusters
● Clustering helps reusing data on L2

Tensor Memory Accelerator (TMA)
● Load a tile asynchronously  
● Not wasting registers 
● Swizzling 32b, 64b, 128b

Asynchronous Barriers 
● Helps waiting TMA asynchronously 
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Evolution in Software: 
PTX[1] & CUTLASS[2]
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Significantly growed

1. Lifespan of Ampere (~2 years)

2. Hopper Architecture

Did MLIR & LLVM keep up? 

[1] Compared pages and table-2 in PTX pdf
[2] Used cloc for LoC

Ampere Hopper

��
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MLIR has gained Hopper Support
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NVGPU and NVVM Dialects
🔥 Hopper GPU Support

Performance
🚀 MLIR has close performance to cuBLAS

Upstream
✅ All the work presented is fully upstreamed to MLIR
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What We Will Discover in Tutorial
Navigating Zero to Hero

Me no Hopper GPU

NVGPU dialect
Multistage Kernel
Warp Specialized Kernel
Get cuBLAS like Performance



MLIR Upstream Dialect Layers
Improved GPU, NVGPU, and NVVM Dialects
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NVGPU Dialect 
● High level operations for Tensor Core, TMA
● NVGPU → NVVM 

NVVM Dialect 
● Low level operations (closer to PTX)
● NVVM → PTX or LLVM intrinsic

GPU Dialect
● Kernel launch, Cluster launch 
● Driver communication  
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MLIR Upstream Dialect Layers
Let’s program NVGPU with python bindings
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Today we will program
● Python → NVGPU → NVVM
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MLIR Upstream Dialect Layers
Connect Your Dialect → NVGPU
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One can lower other dialects into NVGPU
● Vector → NVGPU → NVVM
● Linalg → NVGPU → NVVM 
● Your Dialect 1 → NVGPU → NVVM

Today we will program
● Python → NVGPU → NVVM
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Py + MLIR vs CUTLASS
Dialects vs Layer Comparison
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→ Setup interface on 
     Host

→ Launch kernel, 
     calculate the grid 
     and smem

→ Tensor core, 
TMA load/store

→ PTX instruction

→ Numerical 
conversion, fast math, …

→ Pipeline matmul, 
     main loop,
     epilogue

CUTLASS MLIR NVGPU + Py

Device

@NVDSL.mlir_func
def gemm(x, y, z):
 # Setups and Calls Kernel

Kernel

@NVDSL.mlir_gpu_launch(...)
def gemm_kernel()
 # Kernel Body

Collective

Multistage:
  def prologue() # has nvgpu OPs
  def mainloop() # has nvgpu OPs
  def epilogue() # has nvgpu OPs

Warp Specialized: 
  def producer_loop() # has nvgpu OPs
  def consumer_loop() # has nvgpu OPs

Atom NVGPU Dialect 

Thread .

Intrinsic NVVM Dialect



Program NVGPU Dialect
With Python Bindings
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Tutorials : #87065 is about the be upstreamed
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Codes are here:  {your-llvm-path}/mlir/test/Examples/nvgpu

● Ch0.py → Hello World

● Ch1.py  → 2D Saxpy 

● Ch2.py → 2D Saxpy with TMA

● Ch3.py → GEMM 128x128x64 Tensor Core and TMA

● Ch4.py → GEMM Multistage

● Ch5.py → GEMM Warp Specialized

● Ch6.py → GEMM Warp Specialized Persistent ping-pong (WIP)
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NVDSL : Simplify NVGPU Dialect usage
We focus on Hopper Performance:
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Simplifies:
● Simplify MLIR Host Function (func.func) IR Building

● JIT Compilation and Execution

● Operator Overloading with Arith Dialect for Readable Code

● Easy GPU IR (gpu.launch) Building
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# Regular Python code

def saxpy(y, x, alpha):

 for i in range(256):  

   for j in range(32): 

       y[i, j] += alpha * x[i, j]

# Use numpy arrays

x = np.ones((256 32), np.float32)

y = np.ones((256 32), np.float32)

saxpy(x, y, 2.0)

Ch1.py: 2D SAXPY
Single-Precision A·X Plus Y (SAXPY)
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Ch1.py: 2D SAXPY 
Single-Precision A·X Plus Y (SAXPY)

Building IR with Py bindings

@NVDSL.mlir_func

def saxpy(x, y, alpha):

   # 1. Use MLIR GPU dialect to allocate and copy memory

   t1 = gpu.wait(token_ty, [])

   x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [], [])

   y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [])

   t4 = gpu.memcpy(token_ty, [t3], x_dev, x)

   t5 = gpu.memcpy(token_ty, [t4], y_dev, y)

   t6 = gpu.wait(token_ty, [t5])

   # 2. Compute 2D SAXPY kernel

   @NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1))

   def saxpy_kernel():

       bidx = gpu.block_id(gpu.Dimension.x)

       tidx = gpu.thread_id(gpu.Dimension.x)

       x_val = memref.load(x_dev, [bidx, tidx])

       y_val = memref.load(y_dev, [bidx, tidx])

       y_val += x_val * alpha

       memref.store(y_val, y_dev, [bidx, tidx])

   saxpy_kernel()

   t7 = gpu.memcpy(token_ty, [t6], y, y_dev)

   gpu.wait(token_ty, [t7])

# Regular Python code

def saxpy(y, x, alpha):

 for i in range(256):  # -> blockIdx.x

   for j in range(32): # -> threadIdx.x

       y[i, j] += alpha * x[i, j]

# Use numpy arrays

x = np.ones((256 32), np.float32)

y = np.ones((256 32), np.float32)

saxpy(x, y, 2.0)

Let’s write 
in MLIR
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Building IR with Py bindings

Ch1.py: 2D SAXPY
Build Host IR 

This Decorator (@NVDSL.mlir_func) builds:

func.func @saxpy(%arg_x: memref<256x32xf32>, 

     %arg_y: memref<256x32xf32>, 

     %alpha: f32) 

@NVDSL.mlir_func

def saxpy(x, y, alpha):

   # 1. Use MLIR GPU dialect to allocate and copy memory

   t1 = gpu.wait(token_ty, [])

   x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [], [])

   y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [])

   t4 = gpu.memcpy(token_ty, [t3], x_dev, x)

   t5 = gpu.memcpy(token_ty, [t4], y_dev, y)

   t6 = gpu.wait(token_ty, [t5])

   # 2. Compute 2D SAXPY kernel

   @NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1))

   def saxpy_kernel():

       bidx = gpu.block_id(gpu.Dimension.x)

       tidx = gpu.thread_id(gpu.Dimension.x)

       x_val = memref.load(x_dev, [bidx, tidx])

       y_val = memref.load(y_dev, [bidx, tidx])

       y_val += x_val * alpha

       memref.store(y_val, y_dev, [bidx, tidx])

   saxpy_kernel()

   t7 = gpu.memcpy(token_ty, [t6], y, y_dev)

   gpu.wait(token_ty, [t7]) 18Zero to Hero: Programming  Nvidia Tensor Core with MLIR NVGPU Dialect



Building IR with Py bindings

Ch1.py: 2D SAXPY
Build Host IR 
func.func @saxpy(%arg_x: memref<256x32xf32>, 

%arg_y: memref<256x32xf32>, %alpha: f32) {

 %t1 = gpu.wait async

 %z_dev, %t2 = gpu.alloc async [%t1] () : memref<256x32xf32>

 %y_dev, %t3 = gpu.alloc async [%t2] () : memref<256x32xf32>

 %t4 = gpu.memcpy async [%t3] %x_dev, %arg_x

    : memref<256x32xf32>, memref<256x32xf32>

 %t5 = gpu.memcpy async [%t4] %y_dev, %arg_y 

    : memref<256x32xf32>, memref<256x32xf32>

 %t6 = gpu.wait async [%t5]

@NVDSL.mlir_func

def saxpy(x, y, alpha):

   # 1. Use MLIR GPU dialect to allocate and copy memory

   t1 = gpu.wait(token_ty, [])

   x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [], [])

   y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [])

   t4 = gpu.memcpy(token_ty, [t3], x_dev, x)

   t5 = gpu.memcpy(token_ty, [t4], y_dev, y)

   t6 = gpu.wait(token_ty, [t5])

   # 2. Compute 2D SAXPY kernel

   @NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1))

   def saxpy_kernel():

       bidx = gpu.block_id(gpu.Dimension.x)

       tidx = gpu.thread_id(gpu.Dimension.x)

       x_val = memref.load(x_dev, [bidx, tidx])

       y_val = memref.load(y_dev, [bidx, tidx])

       y_val += x_val * alpha

       memref.store(y_val, y_dev, [bidx, tidx])

   saxpy_kernel()

   t7 = gpu.memcpy(token_ty, [t6], y, y_dev)

   gpu.wait(token_ty, [t7]) 19Zero to Hero: Programming  Nvidia Tensor Core with MLIR NVGPU Dialect



Building IR with Py bindings

Ch1.py: 2D SAXPY
Build Host IR 
func.func @saxpy(%arg_x: memref<256x32xf32>, 

%arg_y: memref<256x32xf32>, %alpha: f32) {

 %t1 = gpu.wait async

 %z_dev, %t2 = gpu.alloc async [%t1] () : memref<256x32xf32>

 %y_dev, %t3 = gpu.alloc async [%t2] () : memref<256x32xf32>

 %t4 = gpu.memcpy async [%t3] %x_dev, %arg_x

    : memref<256x32xf32>, memref<256x32xf32>

 %t5 = gpu.memcpy async [%t4] %y_dev, %arg_y 

    : memref<256x32xf32>, memref<256x32xf32>

 %t6 = gpu.wait async [%t5]

@NVDSL.mlir_func

def saxpy(x, y, alpha):

   # 1. Use MLIR GPU dialect to allocate and copy memory

   t1 = gpu.wait(token_ty, [])

   x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [], [])

   y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [])

   t4 = gpu.memcpy(token_ty, [t3], x_dev, x)

   t5 = gpu.memcpy(token_ty, [t4], y_dev, y)

   t6 = gpu.wait(token_ty, [t5])

   # 2. Compute 2D SAXPY kernel

   @NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1))

   def saxpy_kernel():

       bidx = gpu.block_id(gpu.Dimension.x)

       tidx = gpu.thread_id(gpu.Dimension.x)

       x_val = memref.load(x_dev, [bidx, tidx])

       y_val = memref.load(y_dev, [bidx, tidx])

       y_val += x_val * alpha

       memref.store(y_val, y_dev, [bidx, tidx])

   saxpy_kernel()

   t7 = gpu.memcpy(token_ty, [t6], y, y_dev)

   gpu.wait(token_ty, [t7])

%t7 = gpu.memcpy async [%t6] %arg_y, %y_dev 

    : memref<256x32xf32>, memref<256x32xf32>

gpu.wait async [%t7]
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Building IR with Py bindings

Ch1.py: 2D SAXPY
Build GPU Kernel IR  

This Decorator (@NVDSL.mlir_gpu_launch) builds:

gpu.launch blocks(256,1,1) threads(32, 1, 1) {

 

}

@NVDSL.mlir_func

def saxpy(x, y, alpha):

   # 1. Use MLIR GPU dialect to allocate and copy memory

   t1 = gpu.wait(token_ty, [])

   x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [], [])

   y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [])

   t4 = gpu.memcpy(token_ty, [t3], x_dev, x)

   t5 = gpu.memcpy(token_ty, [t4], y_dev, y)

   t6 = gpu.wait(token_ty, [t5])

   # 2. Compute 2D SAXPY kernel

   @NVDSL.mlir_gpu_launch(grid=(M,1,1), block=(N,1,1))

   def saxpy_kernel():

       bidx = gpu.block_id(gpu.Dimension.x)

       tidx = gpu.thread_id(gpu.Dimension.x)

       x_val = memref.load(x_dev, [bidx, tidx])

       y_val = memref.load(y_dev, [bidx, tidx])

       y_val += x_val * alpha

       memref.store(y_val, y_dev, [bidx, tidx])

   saxpy_kernel()

   t7 = gpu.memcpy(token_ty, [t6], y, y_dev)

   gpu.wait(token_ty, [t7]) 21Zero to Hero: Programming  Nvidia Tensor Core with MLIR NVGPU Dialect



Building IR with Py bindings

Ch1.py: 2D SAXPY
Build GPU Kernel IR  

Inside the decorator function is the GPU Kernel:

gpu.launch blocks(256,1,1) threads(32, 1, 1) {

 %bidx = gpu.block_id  x

 %tidx = gpu.thread_id  x

 %6 = memref.load %x_dev[%bidx, %tidx] : memref<256x32xf32>

 %7 = memref.load %y_dev[%bidx, %tidx] : memref<256x32xf32>

 %8 = arith.mulf %6, %alpha : f32

 %9 = arith.addf %7, %8 : f32

 memref.store %9, %y_dev[%bidx, %tidx] : memref<256x32xf32>

 gpu.terminator

}

@NVDSL.mlir_func

def saxpy(x, y, alpha):

   # 1. Use MLIR GPU dialect to allocate and copy memory

   t1 = gpu.wait(token_ty, [])

   x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [], [])

   y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [])

   t4 = gpu.memcpy(token_ty, [t3], x_dev, x)

   t5 = gpu.memcpy(token_ty, [t4], y_dev, y)

   t6 = gpu.wait(token_ty, [t5])

   # 2. Compute 2D SAXPY kernel

   @NVDSL.mlir_gpu_launch(grid=(M,1,1), block=(N,1,1))

   def saxpy_kernel():

       bidx = gpu.block_id(gpu.Dimension.x)

       tidx = gpu.thread_id(gpu.Dimension.x)

       x_val = memref.load(x_dev, [bidx, tidx])

       y_val = memref.load(y_dev, [bidx, tidx])

       y_val += x_val * alpha

       memref.store(y_val, y_dev, [bidx, tidx])

   saxpy_kernel()

   t7 = gpu.memcpy(token_ty, [t6], y, y_dev)

   gpu.wait(token_ty, [t7]) 22Zero to Hero: Programming  Nvidia Tensor Core with MLIR NVGPU Dialect



Building IR with Py bindings

Ch1.py: 2D SAXPY
Build GPU Kernel IR  

DSL overloads operators with arith.* dialect:

gpu.launch blocks(256,1,1) threads(32, 1, 1) {

 %bidx = gpu.block_id  x

 %tidx = gpu.thread_id  x

 %6 = memref.load %x_dev[%bidx, %tidx] : memref<256x32xf32>

 %7 = memref.load %y_dev[%bidx, %tidx] : memref<256x32xf32>

 %8 = arith.mulf %6, %alpha : f32

 %9 = arith.addf %7, %8 : f32

 memref.store %9, %y_dev[%bidx, %tidx] : memref<256x32xf32>

 gpu.terminator

}

@NVDSL.mlir_func

def saxpy(x, y, alpha):

   # 1. Use MLIR GPU dialect to allocate and copy memory

   t1 = gpu.wait(token_ty, [])

   x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [], [])

   y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [])

   t4 = gpu.memcpy(token_ty, [t3], x_dev, x)

   t5 = gpu.memcpy(token_ty, [t4], y_dev, y)

   t6 = gpu.wait(token_ty, [t5])

   # 2. Compute 2D SAXPY kernel

   @NVDSL.mlir_gpu_launch(grid=(256,1,1), block=(32,1,1))

   def saxpy_kernel():

       bidx = gpu.block_id(gpu.Dimension.x)

       tidx = gpu.thread_id(gpu.Dimension.x)

       x_val = memref.load(x_dev, [bidx, tidx])

       y_val = memref.load(y_dev, [bidx, tidx])

       y_val += x_val * alpha

       memref.store(y_val, y_dev, [bidx, tidx])

   saxpy_kernel()

   t7 = gpu.memcpy(token_ty, [t6], y, y_dev)

   gpu.wait(token_ty, [t7]) 23Zero to Hero: Programming  Nvidia Tensor Core with MLIR NVGPU Dialect



Building IR with Py bindings

Ch1.py: 2D SAXPY
Python calls MLIR func and pass parameters @NVDSL.mlir_func

def saxpy(x, y, alpha):

  # MLIR function body …

# 3. Pass numpy arrays to MLIR

alpha = 2.0

x = np.ones((256, 32), np.float32)

y = np.ones((256, 32), np.float32)

ref = np.ones((256, 32), np.float32)

saxpy(x, y, alpha)

#  4. Verify MLIR with reference computation

ref += x * alpha

np.testing.assert_allclose(y, ref, rtol=5e-03, atol=1e-01)

print("PASS")

# CHECK-NOT: Mismatched elements

Decorator (@NVDSL.mlir_func):
numpy arrays -> memref
JIT compiles
Executes 
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Building IR with Py bindings

Ch1.py: 2D SAXPY
Python calls MLIR func and pass parameters @NVDSL.mlir_func

def saxpy(x, y, alpha):

  # MLIR function body …

# 3. Pass numpy arrays to MLIR

alpha = 2.0

x = np.ones((256, 32), np.float32)

y = np.ones((256, 32), np.float32)

ref = np.ones((256, 32), np.float32)

saxpy(x, y, alpha)

#  4. Verify MLIR with reference computation

ref += x * alpha

np.testing.assert_allclose(y, ref, rtol=5e-03, atol=1e-01)

print("PASS")

# CHECK-NOT: Mismatched elements

Verify the Result
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Decorator (@NVDSL.mlir_func):
numpy arrays -> memref
JIT compiles
Executes 



Building IR with Py bindings

Ch1.py: 2D SAXPY
Execute @NVDSL.mlir_func

def saxpy(x, y, alpha):

  # MLIR function body …

# 3. Pass numpy arrays to MLIR

alpha = 2.0

x = np.ones((256, 32), np.float32)

y = np.ones((256, 32), np.float32)

ref = np.ones((256, 32), np.float32)

saxpy(x, y, alpha)

#  4. Verify MLIR with reference computation

ref += x * alpha

np.testing.assert_allclose(y, ref, rtol=5e-03, atol=1e-01)

print("PASS")

# CHECK-NOT: Mismatched elements

26Zero to Hero: Programming  Nvidia Tensor Core with MLIR NVGPU Dialect

$> python Ch1.py 
 PASS



Ch2.py: 2D SAXPY with TMA
Now let TMA load the data

# Non-Regular Python code

def saxpy(y, x, alpha):

 x_smem = # TMA loads ‘x’ <32xf32> to shared memory

 y_smem = # TMA loads ‘y’ <32xf32> to shared memory

 for i in range(256):

   for j in range(32):

       y[i, j] = y_tma[i, j] + alpha * x_smem[i, j]

Let’s use NVIDIA Hopper TMA to 
load data
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Building IR with Py bindings
class TMA:

 def __init__(self, shape, memref_ty,

   swizzle=nvgpu.TensorMapSwizzleKind.SWIZZLE_NONE,

   l2promo=nvgpu.TensorMapL2PromoKind.L2PROMO_NONE,

   oob=nvgpu.TensorMapOOBKind.OOB_ZERO,

   interleave=nvgpu.TensorMapInterleaveKind.INTERLEAVE_NONE,

 ): # init …

 @property

 def tensormap_descriptor_ty(self):

   memref_str = f"memref<{self.tma_shape[0]}x{self.tma_shape[1]}, 3>"

   parse_str = f"!nvgpu.tensormap.descriptor<tensor = {memref_str},swizzle = {self.swizzle},\

                 l2promo = {self.l2promo},oob = {self.oob},interleave = {self.interleave}>"

   return ir.Type.parse(parse_str)

 def create_descriptor(self, device_ptr):

   tma_descriptor_ty = self.tensormap_descriptor_ty

   device_unranked_memref = memref.CastOp(ir.UnrankedMemRefType.get(

  self.memref_ty.element_type, 

  self.memref_ty.memory_space), device_ptr)

    self.tma_descriptor = nvgpu.TmaCreateDescriptorOp(tma_descriptor_ty, 

        device_unranked_memref,map(const, self.tma_shape))

def prefetch(self, predicate=None):

   nvgpu.tma_prefetch_descriptor(self.tma_descriptor, predicate=predicate)

def load(self, dest, mbarrier: Mbarriers, coords=[0, 0], predicate=None):

   nvgpu.TmaAsyncLoadOp(dest,mbarrier.mbar_group_op,self.tma_descriptor,

            coordinates=map(const, coords),mbarId=mbarrier.id_op, predicate=predicate,

       )

Ch2.py: 2D SAXPY with TMA
TMA OPs and TMA class in NVDSL 
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nvgpu.tma.create.descriptor

● Host calls the CUDA driver, it triggers the function 

cuTensorMapEncodeTiled.

nvgpu.tma.prefetch

● Prefetch TMA descriptor to L1 cache

nvgpu.tma.async.load  

● Loads  1D - 5D tile

● Supports predicated execution 

● Lowered: 
nvvm.cp.async.bulk.tensor.shared.cluster.global



Building IR with Py bindingsclass TMA:

 def __init__(self, shape, memref_ty,

   swizzle=nvgpu.TensorMapSwizzleKind.SWIZZLE_NONE,

   l2promo=nvgpu.TensorMapL2PromoKind.L2PROMO_NONE,

   oob=nvgpu.TensorMapOOBKind.OOB_ZERO,

   interleave=nvgpu.TensorMapInterleaveKind.INTERLEAVE_NONE,

 ): # init …

 @property

 def tensormap_descriptor_ty(self):

   memref_str = f"memref<{self.tma_shape[0]}x{self.tma_shape[1]}, 3>"

   parse_str = f"!nvgpu.tensormap.descriptor<tensor = {memref_str},swizzle = {self.swizzle},\

                 l2promo = {self.l2promo},oob = {self.oob},interleave = {self.interleave}>"

   return ir.Type.parse(parse_str)

 def create_descriptor(self, device_ptr):

   tma_descriptor_ty = self.tensormap_descriptor_ty

   device_unranked_memref = memref.CastOp(ir.UnrankedMemRefType.get(

  self.memref_ty.element_type, 

  self.memref_ty.memory_space), device_ptr)

    self.tma_descriptor = nvgpu.TmaCreateDescriptorOp(tma_descriptor_ty, 

        device_unranked_memref,map(const, self.tma_shape))

def prefetch(self, predicate=None):

   nvgpu.tma_prefetch_descriptor(self.tma_descriptor, predicate=predicate)

def load(self, dest, mbarrier: Mbarriers, coords=[0, 0], predicate=None):

   nvgpu.TmaAsyncLoadOp(dest,mbarrier.mbar_group_op,self.tma_descriptor,

            coordinates=map(const, coords),mbarId=mbarrier.id_op, predicate=predicate,

       )

Ch2.py: 2D SAXPY with TMA
TMA OPs and TMA class in NVDSL 

nvgpu.tma.create.descriptor

● Host calls the CUDA driver, it triggers the function 

cuTensorMapEncodeTiled.

nvgpu.tma.prefetch

● Prefetch TMA descriptor to L1 cache

nvgpu.tma.async.load  

● Loads  1D - 5D tile

● Supports predicated execution

● Lowered: 
nvvm.cp.async.bulk.tensor.shared.cluster.global
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Building IR with Py bindings

Ch2.py: 2D SAXPY with TMA
TMA OPs and TMA class in NVDSL 

nvgpu.tma.create.descriptor

● Host calls the CUDA driver, it triggers the function 

cuTensorMapEncodeTiled.

nvgpu.tma.prefetch

● Prefetch TMA descriptor to L1 cache

nvgpu.tma.async.load  

● Loads  1D - 5D tile

● Supports predicated execution

● Lowered: 
nvvm.cp.async.bulk.tensor.shared.cluster.global

class TMA:

 def __init__(self, shape, memref_ty,

   swizzle=nvgpu.TensorMapSwizzleKind.SWIZZLE_NONE,

   l2promo=nvgpu.TensorMapL2PromoKind.L2PROMO_NONE,

   oob=nvgpu.TensorMapOOBKind.OOB_ZERO,

   interleave=nvgpu.TensorMapInterleaveKind.INTERLEAVE_NONE,

 ): # init …

 @property

 def tensormap_descriptor_ty(self):

   memref_str = f"memref<{self.tma_shape[0]}x{self.tma_shape[1]}, 3>"

   parse_str = f"!nvgpu.tensormap.descriptor<tensor = {memref_str},swizzle = {self.swizzle},\

                 l2promo = {self.l2promo},oob = {self.oob},interleave = {self.interleave}>"

   return ir.Type.parse(parse_str)

 def create_descriptor(self, device_ptr):

   tma_descriptor_ty = self.tensormap_descriptor_ty

   device_unranked_memref = memref.CastOp(ir.UnrankedMemRefType.get(

  self.memref_ty.element_type, 

  self.memref_ty.memory_space), device_ptr)

    self.tma_descriptor = nvgpu.TmaCreateDescriptorOp(tma_descriptor_ty, 

        device_unranked_memref,map(const, self.tma_shape))

def prefetch(self, predicate=None):

   nvgpu.tma_prefetch_descriptor(self.tma_descriptor, predicate=predicate)

def load(self, dest, mbarrier: Mbarriers, coords=[0, 0], predicate=None):

   nvgpu.TmaAsyncLoadOp(dest,mbarrier.mbar_group_op,self.tma_descriptor,

            coordinates=map(const, coords),mbarId=mbarrier.id_op, predicate=predicate,

       )
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Building IR with Py bindings

Ch2.py: 2D SAXPY with TMA
TMA OPs and TMA class in NVDSL 

nvgpu.tma.create.descriptor

● Host calls the CUDA driver, it triggers the function 

cuTensorMapEncodeTiled.

nvgpu.tma.prefetch

● Prefetch TMA descriptor to L1 cache

nvgpu.tma.async.load  

● Loads  1D - 5D tile

● Supports predicated execution

● Lowered: 
nvvm.cp.async.bulk.tensor.shared.cluster.global

class TMA:

 def __init__(self, shape, memref_ty,

   swizzle=nvgpu.TensorMapSwizzleKind.SWIZZLE_NONE,

   l2promo=nvgpu.TensorMapL2PromoKind.L2PROMO_NONE,

   oob=nvgpu.TensorMapOOBKind.OOB_ZERO,

   interleave=nvgpu.TensorMapInterleaveKind.INTERLEAVE_NONE,

 ): # init …

 @property

 def tensormap_descriptor_ty(self):

   memref_str = f"memref<{self.tma_shape[0]}x{self.tma_shape[1]}, 3>"

   parse_str = f"!nvgpu.tensormap.descriptor<tensor = {memref_str},swizzle = {self.swizzle},\

                 l2promo = {self.l2promo},oob = {self.oob},interleave = {self.interleave}>"

   return ir.Type.parse(parse_str)

 def create_descriptor(self, device_ptr):

   tma_descriptor_ty = self.tensormap_descriptor_ty

   device_unranked_memref = memref.CastOp(ir.UnrankedMemRefType.get(

  self.memref_ty.element_type, 

  self.memref_ty.memory_space), device_ptr)

    self.tma_descriptor = nvgpu.TmaCreateDescriptorOp(tma_descriptor_ty, 

        device_unranked_memref,map(const, self.tma_shape))

def prefetch(self, predicate=None):

   nvgpu.tma_prefetch_descriptor(self.tma_descriptor, predicate=predicate)

def load(self, dest, mbarrier: Mbarriers, coords=[0, 0], predicate=None):

   nvgpu.TmaAsyncLoadOp(dest,mbarrier.mbar_group_op,self.tma_descriptor,

            coordinates=map(const, coords),mbarId=mbarrier.id_op, predicate=predicate,

       )
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Ch2.py: 2D SAXPY with TMA
Mbarrier OPs and Mbarrier class in NVDSL 

nvgpu.mbarrier.create 

● Allows creating multiple mbarriers

○ %mbarGroup = nvgpu.mbarrier.create <..., 

num_barriers = 7>

nvgpu.mbarrier.init | arrive | try_wait 

● Convenient access to mbarriers with SSA index. Ideal for 

handling multiple barriers within a loop

○ nvgpu.mbarrier.init %mbarGroup[%mbar_id]

● Provides support for predication 

○ nvgpu.mbarrier.expect_tx  

%mbarGroup[%mbar_id] predicate = %tidx0
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Building IR with Py bindings

class Mbarriers:

 def __init__(self, number_of_barriers=1):

   self.mbar_ty = …

   self.number_of_barriers = number_of_barriers

   self.mbar_group_op = nvgpu.mbarrier_create(self.mbar_ty)

 def __getitem__(self, key):

   self.id_op = const(key)

   return self

 def init(self, count: int, predicate=None):

   count_op = const(count)

   nvgpu.mbarrier_init(self.mbar_group_op, count_op, self.id_op…)

 def arrive(self, txcount: int = 0, predicate=None):

   if txcount != 0:

     txcount_op = const(txcount)

     nvgpu.mbarrier_arrive_expect_tx(

       self.mbar_group_op, txcount_op, self.id_op, predicate=predicate

     )

 def try_wait(self, phase: bool = False, ticks: int = 10000000):

   nvgpu.MBarrierTryWaitParityOp(...)



Building IR with Py bindings

Ch2.py: 2D SAXPY with TMA
Mbarrier OPs and Mbarrier class in NVDSL 

nvgpu.mbarrier.create 

● Allows creating multiple mbarriers

○ %mbarGroup = nvgpu.mbarrier.create <..., 

num_barriers = 7>

nvgpu.mbarrier.init | arrive | try_wait 

● Convenient access to mbarriers with SSA index. Ideal for 

handling multiple barriers within a loop

○ nvgpu.mbarrier.init %mbarGroup[%mbar_id]

● Provides support for predication 

○ nvgpu.mbarrier.expect_tx  

%mbarGroup[%mbar_id] predicate = %tidx0

class Mbarriers:

 def __init__(self, number_of_barriers=1):

   self.mbar_ty = …

   self.number_of_barriers = number_of_barriers

   self.mbar_group_op = nvgpu.mbarrier_create(self.mbar_ty)

 def __getitem__(self, key):

   self.id_op = const(key)

   return self

 def init(self, count: int, predicate=None):

   count_op = const(count)

   nvgpu.mbarrier_init(self.mbar_group_op, count_op, self.id_op…)

 def arrive(self, txcount: int = 0, predicate=None):

   if txcount != 0:

     txcount_op = const(txcount)

     nvgpu.mbarrier_arrive_expect_tx(

       self.mbar_group_op, txcount_op, self.id_op, predicate=predicate

     )

 def try_wait(self, phase: bool = False, ticks: int = 10000000):

   nvgpu.MBarrierTryWaitParityOp(...)
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Building IR with Py bindings

Ch2.py: 2D SAXPY with TMA
Mbarrier OPs and Mbarrier class in NVDSL 

nvgpu.mbarrier.create 

● Allows creating multiple mbarriers

○ %mbarGroup = nvgpu.mbarrier.create <..., 

num_barriers = 7>

nvgpu.mbarrier.init | arrive | try_wait 

● Convenient access to mbarriers with SSA index. Ideal for 

handling multiple barriers within a loop

○ nvgpu.mbarrier.init %mbarGroup[%mbar_id]

● Provides support for predication 

○ nvgpu.mbarrier.expect_tx  

%mbarGroup[%mbar_id] predicate = %tidx0

class Mbarriers:

 def __init__(self, number_of_barriers=1):

   self.mbar_ty = …

   self.number_of_barriers = number_of_barriers

   self.mbar_group_op = nvgpu.mbarrier_create(self.mbar_ty)

 def __getitem__(self, key):

   self.id_op = const(key)

   return self

 def init(self, count: int, predicate=None):

   count_op = const(count)

   nvgpu.mbarrier_init(self.mbar_group_op, count_op, self.id_op…)

 def arrive(self, txcount: int = 0, predicate=None):

   if txcount != 0:

     txcount_op = const(txcount)

     nvgpu.mbarrier_arrive_expect_tx(

       self.mbar_group_op, txcount_op, self.id_op, predicate=predicate

     )

 def try_wait(self, phase: bool = False, ticks: int = 10000000):

   nvgpu.MBarrierTryWaitParityOp(...)
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Building IR with Py bindings

Ch2.py: 2D SAXPY with TMA
@NVDSL.mlir_func

def saxpy_tma(x, y, alpha):

   token_ty = ir.Type.parse("!gpu.async.token")

   t1 = gpu.wait(token_ty, [])

   x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [], [])

   y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [])

   t4 = gpu.memcpy(token_ty, [t3], x_dev, x)

   t5 = gpu.memcpy(token_ty, [t4], y_dev, y)

   t6 = gpu.wait(token_ty, [t5])

   x_tma = TMA((1,32), x.type)

   y_tma = TMA((1,32), y.type)

   x_tma.create_descriptor(x_dev)

   y_tma.create_descriptor(y_dev)

  @NVDSL.mlir_gpu_launch(grid=(M,1,1),block=(N,1,1),smem=256)

  def saxpy_tma_kernel():

    # Kernel Body (next slides)

   t7 = gpu.memcpy(token_ty, [t6], y, y_dev)

   gpu.wait(token_ty, [t7])

Start Building Host IR
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Building IR with Py bindings

Ch2.py: 2D SAXPY with TMA
Generated IR

@NVDSL.mlir_func

def saxpy_tma(x, y, alpha):

   token_ty = ir.Type.parse("!gpu.async.token")

   t1 = gpu.wait(token_ty, [])

   x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [], [])

   y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [])

   t4 = gpu.memcpy(token_ty, [t3], x_dev, x)

   t5 = gpu.memcpy(token_ty, [t4], y_dev, y)

   t6 = gpu.wait(token_ty, [t5])

   x_tma = TMA((1,32), x.type)

   y_tma = TMA((1,32), y.type)

   x_tma.create_descriptor(x_dev)

   y_tma.create_descriptor(y_dev)

  @NVDSL.mlir_gpu_launch(grid=(M,1,1),block=(N,1,1),smem=256)

  def saxpy_tma_kernel():

    # Kernel Body (next slides)

   t7 = gpu.memcpy(token_ty, [t6], y, y_dev)

   gpu.wait(token_ty, [t7])
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Building IR with Py bindings

Ch2.py: 2D SAXPY with TMA
Generated IR

@NVDSL.mlir_func

def saxpy_tma(x, y, alpha):

   token_ty = ir.Type.parse("!gpu.async.token")

   t1 = gpu.wait(token_ty, [])

   x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [], [])

   y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [])

   t4 = gpu.memcpy(token_ty, [t3], x_dev, x)

   t5 = gpu.memcpy(token_ty, [t4], y_dev, y)

   t6 = gpu.wait(token_ty, [t5])

   x_tma = TMA((1,32), x.type)

   y_tma = TMA((1,32), y.type)

   x_tma.create_descriptor(x_dev)

   y_tma.create_descriptor(y_dev)

  @NVDSL.mlir_gpu_launch(grid=(M,1,1),block=(N,1,1),smem=256)

  def saxpy_tma_kernel():

    # Kernel Body (next slides)

   t7 = gpu.memcpy(token_ty, [t6], y, y_dev)

   gpu.wait(token_ty, [t7])

%3 = nvgpu.tma.create.descriptor %x box[%c1, %c32] 

   : memref<*xf32> 

   -> <tensor = memref<1x32xf32, 3>, 

       swizzle = none, 

       l2promo = none, 

       oob = zero, 

       interleave = none>

%4 = nvgpu.tma.create.descriptor %y box[%c1, %c32] 

   : memref<*xf32> 

   -> <tensor = memref<1x32xf32, 3>, 

       swizzle = none, 

       l2promo = none, 

       oob = zero, 

       interleave = none>
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%memref, %asyncToken = gpu.alloc async [%6] () : memref<256x32xf32>

%7 = gpu.memcpy async [%asyncToken_1] %memref, %arg0 : memref<256x32xf32>, memref<256x32xf32>

%cast = memref.cast %memref : memref<256x32xf32> to memref<*xf32>

%9 = builtin.unrealized_conversion_cast %cast : memref<*xf32> to !llvm.struct<(i64, ptr)>

%10 = llvm.mlir.constant(7 : i32) : i64

%11 = llvm.extractvalue %9[0] : !llvm.struct<(i64, ptr)>

%12 = llvm.extractvalue %9[1] : !llvm.struct<(i64, ptr)>

%13 = llvm.mlir.constant(5 : i32) : i64

%14 = llvm.alloca %13 x i64 : (i64) -> !llvm.ptr

%15 = llvm.mlir.constant(0 : i32) : i64

%16 = llvm.getelementptr %14[%15] : (!llvm.ptr, i64) -> !llvm.ptr, !llvm.ptr

llvm.store %5, %16 : i64, !llvm.ptr

%17 = llvm.mlir.constant(1 : i32) : i64

%18 = llvm.getelementptr %14[%17] : (!llvm.ptr, i64) -> !llvm.ptr, !llvm.ptr

llvm.store %4, %18 : i64, !llvm.ptr

%19 = llvm.mlir.constant(0 : i32) : i64

%20 = llvm.mlir.constant(0 : i32) : i64

%21 = llvm.mlir.constant(0 : i32) : i64

%22 = llvm.mlir.constant(0 : i32) : i64

%23 = llvm.call @mgpuTensorMapEncodeTiledMemref(%11, %12, %10, %19, %20, %21, %22, %14) : (i64, 

!llvm.ptr, i64, i64, i64, i64, i64, !llvm.ptr) -> !llvm.ptr

Lowering nvgpu.tma.create.descriptor 
Calls MLIR Runtime @mgpuTensorMapEncodeTiledMemref

%3 = nvgpu.tma.create.descriptor %x box[%c1, %c32] 

   : memref<*xf32> 

   -> <tensor = memref<1x32xf32, 3>, 

       swizzle = none, 

       l2promo = none, 

       oob = zero, 

       interleave = none>

--convert-nvgpu-to-nvvm Pass
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Inside @mgpuTensorMapEncodeTiledMemref
Calls CUDA driver cuTensorMapEncodeTiled

extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuTensorMapEncodeTiled(...) {

 CUDA_REPORT_IF_ERROR(cuTensorMapEncodeTiled(tensorMap, tensorDataType, tensorRank, globalAddress,   

   globalDim, globalStrides, boxDim, elementStrides, interleave, swizzle, l2Promotion, oobFill));

  }

extern "C" MLIR_CUDA_WRAPPERS_EXPORT void *mgpuTensorMapEncodeTiledMemref(...

) {

 CUtensorMap tensorMap;

 ...

 mgpuTensorMapEncodeTiled(&tensorMap, tensorDataType, tensorRank32,globalAddress, globalDim, 

globalStrides, boxDim, elementStrides, interleave, swizzle, l2Promotion, oobFill);

 // Copy created tensor map to device

 CUdeviceptr dTensorMap;

 CUDA_REPORT_IF_ERROR(cuMemAlloc(&dTensorMap, sizeof(CUtensorMap)));

 CUDA_REPORT_IF_ERROR(cuMemcpy(dTensorMap,

                               reinterpret_cast<CUdeviceptr>(&tensorMap),

                               sizeof(CUtensorMap)));

 return reinterpret_cast<void *>(dTensorMap);

}

CUDA driver call 
generates TMA descriptor 
(aka CUtensorMap *) 

cuMemAlloc & cuMemcpy
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Building IR with Py bindings

Ch2.py: 2D SAXPY with TMA    @NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1), smem=sz_x_y)

   def saxpy_tma_kernel():

       bidx = gpu.block_id(gpu.Dimension.x)

       tidx = gpu.thread_id(gpu.Dimension.x)

       isThread0 = tidx == 0

       # 1. Create and initialize asynchronous transactional barrier (mbarrier)

       mbar_group = Mbarriers(number_of_barriers=1)

       mbar_group[0].init(1, predicate=isThread0)

       # 2. Execute Tensor Memory Accelerator (TMA) Load

       x_smem = get_dynamic_shared_memory((1, N), T.f32())

       y_smem = get_dynamic_shared_memory((1, N), T.f32(), offset=M * N * 2)

       x_tma.load(x_smem, mbar_group[0], coords=[0, bidx], predicate=isThread0)

       y_tma.load(y_smem, mbar_group[0], coords=[0, bidx], predicate=isThread0)

       mbar_group[0].arrive(txcount=size_x + size_y, predicate=isThread0)

       # 3. Wait for completion of TMA load with mbarrier

       mbar_group[0].try_wait()

       x_val = memref.load(x_smem, [0, tidx])

       y_val = memref.load(y_smem, [0, tidx])

       # SAXPY: y[i] += a * x[i];

       y_val += x_val * alpha

       memref.store(y_val, y_dev, [bidx, tidx])

Start Building GPU IR
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Building IR with Py bindings

Ch2.py: 2D SAXPY with TMA
Generated IR

gpu.launch blocks(256,1,1) threads(32,1,1) … {

  %bdimx = gpu.block_id  x

  %tidx = gpu.thread_id  x

  %isThread0 = arith.cmpi eq, %thread_id_x, %c0 : index

  // 1. Create and initialize mbarrier

  %bar = nvgpu.mbarrier.create -> <memorySpace = #gpu.address_space<workgroup>>

  nvgpu.mbarrier.init %bar[%c0], %c1, predicate = %isThread0  

  : <memorySpace = #gpu.address_space<workgroup>>

   @NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1), smem=sz_x_y)

   def saxpy_tma_kernel():

       bidx = gpu.block_id(gpu.Dimension.x)

       tidx = gpu.thread_id(gpu.Dimension.x)

       isThread0 = tidx == 0

       # 1. Create and initialize asynchronous transactional barrier (mbarrier)

       mbar_group = Mbarriers(number_of_barriers=1)

       mbar_group[0].init(1, predicate=isThread0)

       # 2. Execute Tensor Memory Accelerator (TMA) Load

       x_smem = get_dynamic_shared_memory((1, N), T.f32())

       y_smem = get_dynamic_shared_memory((1, N), T.f32(), offset=M * N * 2)

       x_tma.load(x_smem, mbar_group[0], coords=[0, bidx], predicate=isThread0)

       y_tma.load(y_smem, mbar_group[0], coords=[0, bidx], predicate=isThread0)

       mbar_group[0].arrive(txcount=size_x + size_y, predicate=isThread0)

       # 3. Wait for completion of TMA load with mbarrier

       mbar_group[0].try_wait()

       x_val = memref.load(x_smem, [0, tidx])

       y_val = memref.load(y_smem, [0, tidx])

       # SAXPY: y[i] += a * x[i];

       y_val += x_val * alpha
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// 2. Execute Tensor Memory Accelerator (TMA) Load

%8 = gpu.dynamic_shared_memory : memref<?xi8, #gpu.address_space<workgroup>>

%x_smem = memref.view %8[%c0][] : memref<?xi8, #gpu.address_space<workgroup>> to memref<256x32xf32, #gpu.address_space<workgroup>>

%y_smem = memref.view %8[%c128][] : memref<?xi8, #gpu.address_space<workgroup>> to memref<256x32xf32, #gpu.address_space<workgroup>>

nvgpu.tma.async.load %desc_x[%c0, %bidx], %bar[%c0] to %x_smem, 

                predicate = %isThread0 
: <tensor = memref<256x32xf32, 3>, swizzle = none, l2promo = none, oob = zero, interleave = none>, <memorySpace = #gpu.address_space<workgroup>> -> memref<256x32xf32, #gpu.address_space<workgroup>>

nvgpu.tma.async.load %desc_y[%c0, %bidx], %bar[%c0] to %y_smem, 

                predicate = %isThread0
: <tensor = memref<256x32xf32, 3>, swizzle = none, l2promo = none, oob = zero, interleave = none>, <memorySpace = #gpu.address_space<workgroup>> -> memref<256x32xf32, #gpu.address_space<workgroup>>

nvgpu.mbarrier.arrive.expect_tx %bar[%c0], %c256, 

                predicate = %isThread0
: <memorySpace = #gpu.address_space<workgroup>>

Building IR with Py bindings

Ch2.py: 2D SAXPY with TMA
Generated IR

Bytes expected to be loaded by TMA
  txcount = sizeof(x + y) = 256byte
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   @NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1), smem=sz_x_y)

   def saxpy_tma_kernel():

       bidx = gpu.block_id(gpu.Dimension.x)

       tidx = gpu.thread_id(gpu.Dimension.x)

       isThread0 = tidx == 0

       # 1. Create and initialize asynchronous transactional barrier (mbarrier)

       mbar_group = Mbarriers(number_of_barriers=1)

       mbar_group[0].init(1, predicate=isThread0)

       # 2. Execute Tensor Memory Accelerator (TMA) Load

       x_smem = get_dynamic_shared_memory((1, N), T.f32())

       y_smem = get_dynamic_shared_memory((1, N), T.f32(), offset=M * N * 2)

       x_tma.load(x_smem, mbar_group[0], coords=[0, bidx], predicate=isThread0)

       y_tma.load(y_smem, mbar_group[0], coords=[0, bidx], predicate=isThread0)

       mbar_group[0].arrive(txcount=size_x + size_y, predicate=isThread0)

       # 3. Wait for completion of TMA load with mbarrier

       mbar_group[0].try_wait()

       x_val = memref.load(x_smem, [0, tidx])

       y_val = memref.load(y_smem, [0, tidx])

       # SAXPY: y[i] += a * x[i];

       y_val += x_val * alpha

       memref.store(y_val, y_dev, [bidx, tidx])



nvgpu.mbarrier.try_wait.parity %bar[%c0], %false, 

%c10000000 : <memorySpace = #gpu.address_space<workgroup>>

Building IR with Py bindings

Ch2.py: 2D SAXPY with TMA
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   @NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1), smem=sz_x_y)

   def saxpy_tma_kernel():

       bidx = gpu.block_id(gpu.Dimension.x)

       tidx = gpu.thread_id(gpu.Dimension.x)

       isThread0 = tidx == 0

       # 1. Create and initialize asynchronous transactional barrier (mbarrier)

       mbar_group = Mbarriers(number_of_barriers=1)

       mbar_group[0].init(1, predicate=isThread0)

       # 2. Execute Tensor Memory Accelerator (TMA) Load

       x_smem = get_dynamic_shared_memory((1, N), T.f32())

       y_smem = get_dynamic_shared_memory((1, N), T.f32(), offset=M * N * 2)

       x_tma.load(x_smem, mbar_group[0], coords=[0, bidx], predicate=isThread0)

       y_tma.load(y_smem, mbar_group[0], coords=[0, bidx], predicate=isThread0)

       mbar_group[0].arrive(txcount=size_x + size_y, predicate=isThread0)

       # 3. All threads in CTA wait for completion of TMA load with mbarrier

       mbar_group[0].try_wait()

       x_val = memref.load(x_smem, [0, tidx])

       y_val = memref.load(y_smem, [0, tidx])

       # SAXPY: y[i] += a * x[i];

       y_val += x_val * alpha

       memref.store(y_val, y_dev, [bidx, tidx])



Building IR with Py bindings

Ch2.py: 2D SAXPY with TMA    @NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1), smem=sz_x_y)

   def saxpy_tma_kernel():

       bidx = gpu.block_id(gpu.Dimension.x)

       tidx = gpu.thread_id(gpu.Dimension.x)

       isThread0 = tidx == 0

       # 1. Create and initialize asynchronous transactional barrier (mbarrier)

       mbar_group = Mbarriers(number_of_barriers=1)

       mbar_group[0].init(1, predicate=isThread0)

       # 2. Execute Tensor Memory Accelerator (TMA) Load

       x_smem = get_dynamic_shared_memory((1, N), T.f32())

       y_smem = get_dynamic_shared_memory((1, N), T.f32(), offset=M * N * 2)

       x_tma.load(x_smem, mbar_group[0], coords=[0, bidx], predicate=isThread0)

       y_tma.load(y_smem, mbar_group[0], coords=[0, bidx], predicate=isThread0)

       mbar_group[0].arrive(txcount=size_x + size_y, predicate=isThread0)

       # 3. Wait for completion of TMA load with mbarrier

       mbar_group[0].try_wait()

       x_val = memref.load(x_smem, [0, tidx])

       y_val = memref.load(y_smem, [0, tidx])

       # SAXPY: y[i] += a * x[i];

       y_val += x_val * alpha

       memref.store(y_val, y_dev, [bidx, tidx])

Computation is similar to Ch1.py
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Ch3.py: GEMM 128x128x64 with Tensor Core

def gemm_128x128x64(a, b, d):

 a_smem, b_smem = tma_load()

 for i in range(128):

  for j in range(128):

    for k in range(64):

      d[i, j] += a_smem[i,k] * b_smem[k,j]
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Ch3.py: GEMM 128x128x64 with Tensor Core

def gemm_128x128x64(a, b, d):

 a_smem, b_smem = tma_load()

 for i in range(128):

  for j in range(128):

    for k in range(64):

      d[i, j] += a_smem[i,k] * b_smem[k,j]
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Launch 1 Thread Block (CTA) 

Offload 128x128x64 GEMM to Tensor Core



Building IR with Py bindings

class WGMMAType(Enum):

 Accumulator = 1

 Descriptor = 2

class WGMMAMatrix:

 def __init__( self, matrix_type: WGMMAType, shape: list = None, ):...

 def update_smem(self, smem):

   self.smem = smem

 def update_accumulator(self, acc_op):

   self.acc_op = acc_op

 def __matmul__(self, rhs):

   lhs = nvgpu.warpgroup_generate_descriptor(...)

   rhs = nvgpu.warpgroup_generate_descriptor(...)

   return [lhs, rhs]

 def __iadd__(self, matmulResult):

   ...

   return nvgpu.warpgroup_mma(self.acc_op.type, lhs, rhs, self.acc_op, …)

 def store_accumulator(self):

     nvgpu.warpgroup_mma_store(...)

Ch3.py: GEMM 128x128x64 
Tensor Core OPs and class WGMMAMatrix in NVDSL 

nvgpu.warpgroup.mma.init.accumulator 

● Create and initialize registers (no need for a new op in nvvm)

nvgpu.warpgroup.generate.descriptor 

● Generates 64-bit descriptor that keeps: Start Address, leading 

dimension, stride, swizzle (no need for a new op in nvvm)

nvgpu.warpgroup.mma

● Use Tensor Core using following new ops in nvvm
● nvvm.wgmma.fence.aligned

● nvvm.wgmma.mma_async

● nvvm.wgmma.commit.group.sync.aligned

● nvvm.wgmma.wait.group.sync.aligned 

nvgpu.warpgroup.mma.store 

● Store fragmented registers to shared or global memory using 
following nvvm operations

○ nvvm.stmatrix

○ vector.store
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Building IR with Py bindings

Ch3.py: GEMM 128x128x64 @NVDSL.mlir_func

def gemm_128_128_64(a, b, d):

 t1 = gpu.wait(token_ty, [])

 a_dev, t2 = gpu.alloc(a.type, token_ty, [t1], [], [])

 b_dev, t3 = gpu.alloc(b.type, token_ty, [t2], [], [])

 d_dev, t4 = gpu.alloc(d.type, token_ty, [t3], [], [])

 t5 = gpu.memcpy(token_ty, [t4], a_dev, a)

 t6 = gpu.memcpy(token_ty, [t5], b_dev, b)

 t7 = gpu.wait(token_ty, [t6])

 sw = nvgpu.TensorMapSwizzleKind.SWIZZLE_128B

 a_tma = TMA([128, 64], a.type, swizzle=sw)

 b_tma = TMA([64,  64], b.type, swizzle=sw)

 a_tma.create_descriptor(a_dev)

 b_tma.create_descriptor(b_dev)

 sz = get_type_size(a.type) + get_type_size(b.type)

 @NVDSL.mlir_gpu_launch(grid=(1, 1, 1), block=(128, 1, 1), smem=sz)

 def gemm_tma_kernel():

   # Kernel Body

 gemm_tma_kernel()

 t8 = gpu.memcpy(token_ty, [t7], d, d_dev)

 gpu.wait(None, [t8])

Start Building Host IR
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Building IR with Py bindings

Ch3.py: GEMM 128x128x64 @NVDSL.mlir_func

def gemm_128_128_64(a, b, d):

 t1 = gpu.wait(token_ty, [])

 a_dev, t2 = gpu.alloc(a.type, token_ty, [t1], [], [])

 b_dev, t3 = gpu.alloc(b.type, token_ty, [t2], [], [])

 d_dev, t4 = gpu.alloc(d.type, token_ty, [t3], [], [])

 t5 = gpu.memcpy(token_ty, [t4], a_dev, a)

 t6 = gpu.memcpy(token_ty, [t5], b_dev, b)

 t7 = gpu.wait(token_ty, [t6])

 sw = nvgpu.TensorMapSwizzleKind.SWIZZLE_128B

 a_tma = TMA([128, 64], a.type, swizzle=sw)

 b_tma = TMA([64,  64], b.type, swizzle=sw)

 a_tma.create_descriptor(a_dev)

 b_tma.create_descriptor(b_dev)

 sz = get_type_size(a.type) + get_type_size(b.type)

 @NVDSL.mlir_gpu_launch(grid=(1, 1, 1), block=(128, 1, 1), smem=sz)

 def gemm_tma_kernel():

   # Kernel Body

 gemm_tma_kernel()

 t8 = gpu.memcpy(token_ty, [t7], d, d_dev)

 gpu.wait(None, [t8]) 49Zero to Hero: Programming  Nvidia Tensor Core with MLIR NVGPU Dialect



Building IR with Py bindings

Ch3.py: GEMM 128x128x64 
 @NVDSL.mlir_gpu_launch(grid=(1,1,1), 

                        block=(128,1,1),smem=sz)

 def gemm_tma_kernel():

   tidx = gpu.thread_id(gpu.Dimension.x)

   isThread0 = tidx == 0   

   mbar_group = Mbarriers(number_of_barriers=1)

   mbar_group[0].init(1, predicate=isThread0)

   # 1. TMA Load for two input matrices

   tma_load(mbar_group, a_tma, b_tma, isThread0)

   # 2. All threads wait TMA load completion

   mbar_group[0].try_wait()

   a_smem = get_dynamic_shared_memory((128, 64), T.f16())

   b_smem = get_dynamic_shared_memory((64, 128), T.f16(), offset=off_b)

   # 3. Performs Tensor Core GEMM 128x128x64 by warpgroup

   A = WGMMAMatrix(WGMMAType.Descriptor, [128, 64], desc=a_tma, a_smem)

   B = WGMMAMatrix(WGMMAType.Descriptor, [64, 128], desc=b_tma, b_smem)

   C = WGMMAMatrix(WGMMAType.Accumulator, shape=[128, 128], ty=T.f32())

   # Matrix Multiply

   C += A @ B

   

   # 4. Stores fragmented registers to global memory by warpgroup

   C.store_accumulator(d_dev)

Start Building GPU IR
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gpu.launch blocks(1,1,1) threads(128,1,1) {

  %tidx = gpu.thread_id  x

  %isThread0 = arith.cmpi eq, %thread_id_x, %c0 : index

  %bar = nvgpu.mbarrier.create -> <memorySpace = #gpu.address_space<workgroup>>

  nvgpu.mbarrier.init %bar[%c0], %c1, predicate = %isThread0  

  : <memorySpace = #gpu.address_space<workgroup>>

Building IR with Py bindings

Ch3.py: GEMM 128x128x64 
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 @NVDSL.mlir_gpu_launch(grid=(1,1,1), 

                        block=(128,1,1),smem=sz)

 def gemm_tma_kernel():

   tidx = gpu.thread_id(gpu.Dimension.x)

   isThread0 = tidx == 0   

   mbar_group = Mbarriers(number_of_barriers=1)

   mbar_group[0].init(1, predicate=isThread0)

   # 1. TMA Load for two input matrices

   tma_load(mbar_group, a_tma, b_tma, 0, 0, isThread0)

   # 2. All threads wait TMA load completion

   mbar_group[0].try_wait()

   a_smem = get_dynamic_shared_memory((128, 64), T.f16())

   b_smem = get_dynamic_shared_memory((64, 128), T.f16(), offset=off_b)

   # 3. Performs Tensor Core GEMM 128x128x64 by warpgroup

   A = WGMMAMatrix(WGMMAType.Descriptor, [128, 64], desc=a_tma, a_smem)

   B = WGMMAMatrix(WGMMAType.Descriptor, [64, 128], desc=b_tma, b_smem)

   C = WGMMAMatrix(WGMMAType.Accumulator, shape=[128, 128], ty=T.f32())

   # Matrix Multiply

   C += A @ B

   

   # 4. Stores fragmented registers to global memory by warpgroup

   C.store_accumulator(d_dev)



Building IR with Py bindings

Ch3.py: GEMM 128x128x64 

def tma_load(mbar_group:Mbarriers, a_tma:TMA, b_tma:TMA, slot, stage, pred): 

   size_tma_a = get_type_size(a_tma.tma_memref)

   size_tma_b = get_type_size(b_tma.tma_memref)

   ta_count = size_tma_a + (size_tma_b * 2)

   off_b = size_tma_a

   off_b2 = off_b + size_tma_b

   a_elem_ty = a_tma.tma_memref.element_type

   b_elem_ty = b_tma.tma_memref.element_type

   a = get_dynamic_shared_memory(a_tma.tma_memref.shape, a_elem_ty)

   b1 = get_dynamic_shared_memory(b_tma.tma_memref.shape, b_elem_ty, off_b)

   b2 = get_dynamic_shared_memory(b_tma.tma_memref.shape, b_elem_ty, off_b2)

   mbar_group[slot].arrive(ta_count, predicate=pred)

   dimN, dimM = partition_shape() 

   a_tma.load(a,  mbar_group[slot], coords=[dimK     , dimM], predicate=pred)

   b_tma.load(b1, mbar_group[slot], coords=[dimN     , dimK], predicate=pred)

   b_tma.load(b2, mbar_group[slot], coords=[dimN + 64, dimK], predicate=pred)
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 @NVDSL.mlir_gpu_launch(grid=(1,1,1), 

                        block=(128,1,1),smem=sz)

 def gemm_tma_kernel():

   tidx = gpu.thread_id(gpu.Dimension.x)

   isThread0 = tidx == 0   

   mbar_group = Mbarriers(number_of_barriers=1)

   mbar_group[0].init(1, predicate=isThread0)

   # 1. TMA Load for two input matrices

   tma_load(mbar_group, a_tma, b_tma, 0, 0, isThread0)

   # 2. All threads wait TMA load completion

   mbar_group[0].try_wait()

   a_smem = get_dynamic_shared_memory((128, 64), T.f16())

   b_smem = get_dynamic_shared_memory((64, 128), T.f16(), offset=off_b)

   # 3. Performs Tensor Core GEMM 128x128x64 by warpgroup

   A = WGMMAMatrix(WGMMAType.Descriptor, [128, 64], desc=a_tma, a_smem)

   B = WGMMAMatrix(WGMMAType.Descriptor, [64, 128], desc=b_tma, b_smem)

   C = WGMMAMatrix(WGMMAType.Accumulator, shape=[128, 128], ty=T.f32())

   # Matrix Multiply

   C += A @ B

   

   # 4. Stores fragmented registers to global memory by warpgroup

   C.store_accumulator(d_dev)



Ch3.py: GEMM 128x128x64 

def tma_load(mbar_group:Mbarriers, a_tma:TMA, b_tma:TMA, slot, stage, pred): 

   size_tma_a = get_type_size(a_tma.tma_memref)

   size_tma_b = get_type_size(b_tma.tma_memref)

   ta_count = size_tma_a + (size_tma_b * 2)

   off_b = size_tma_a

   off_b2 = off_b + size_tma_b

   a_elem_ty = a_tma.tma_memref.element_type

   b_elem_ty = b_tma.tma_memref.element_type

   a = get_dynamic_shared_memory(a_tma.tma_memref.shape, a_elem_ty)

   b1 = get_dynamic_shared_memory(b_tma.tma_memref.shape, b_elem_ty, off_b)

   b2 = get_dynamic_shared_memory(b_tma.tma_memref.shape, b_elem_ty, off_b2)

   mbar_group[slot].arrive(ta_count, predicate=pred)

   dimN, dimM = partition_shape() 

   a_tma.load(a,  mbar_group[slot], coords=[dimK     , dimM], predicate=pred)

   b_tma.load(b1, mbar_group[slot], coords=[dimN     , dimK], predicate=pred)

   b_tma.load(b2, mbar_group[slot], coords=[dimN + 64, dimK], predicate=pred)
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Building IR with Py bindings

Ch3.py: GEMM 128x128x64 

%A = nvgpu.warpgroup.generate.descriptor %view, %3 

: memref<128x64xf16, ...>,  …

%B = nvgpu.warpgroup.generate.descriptor %view_5, %4 

: memref<64x128xf16, ...>,  …

%C = nvgpu.warpgroup.mma.init.accumulator 

       -> <fragmented = vector<128x128xf32>>

%D = nvgpu.warpgroup.mma %10, %11, %9 {transposeB} 

: <tensor = memref<128x64xf16, ...>>, 

  <tensor = memref<64x128xf16, ...>>, 

  <fragmented = vector<128x128xf32>> 

-> <fragmented = vector<128x128xf32>>
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 @NVDSL.mlir_gpu_launch(grid=(1,1,1), 

                        block=(128,1,1),smem=sz)

 def gemm_tma_kernel():

   tidx = gpu.thread_id(gpu.Dimension.x)

   isThread0 = tidx == 0   

   mbar_group = Mbarriers(number_of_barriers=1)

   mbar_group[0].init(1, predicate=isThread0)

   # 1. TMA Load for two input matrices

   tma_load(mbar_group, a_tma, b_tma, isThread0)

   # 2. All threads wait TMA load completion

   mbar_group[0].try_wait()

   a_smem = get_dynamic_shared_memory((128, 64), T.f16())

   b_smem = get_dynamic_shared_memory((64, 128), T.f16(), offset=off_b)

   # 3. Initialize 2 Input Matrices and Accumulator

   A = WGMMAMatrix(WGMMAType.Descriptor, [128 ,64], desc=a_tma, a_smem)

   B = WGMMAMatrix(WGMMAType.Descriptor, [64, 128], desc=b_tma, b_smem)

   C = WGMMAMatrix(WGMMAType.Accumulator, shape=[128, 128], ty=T.f32())

   # Matrix Multiply

   C += A @ B

   

   # 4. Stores fragmented registers to global memory by warpgroup

   C.store_accumulator(d_dev)



Go Deeper nvgpu.warpgroup.mma → nvvm/PTX
128x128x64 → 8 times 64x128x16 (supported tensor core shape)

// Initialize input matrix: 2x64xf32 Registers

%r = 0 : !llvm.struct<(...)> 

// 8 x wgmma.mma_async.m64n128k16 PTX instruction

nvvm.wgmma.fence.aligned

%w1 = nvvm.wgmma.mma_async %dA,      %dB,     %r[0],  <m=64, n=128, k=16>

%w2 = nvvm.wgmma.mma_async %dA+2,    %dB+128, %w1,    <m=64, n=128, k=16>

%w3 = nvvm.wgmma.mma_async %dA+4,    %dB+256, %w2,    <m=64, n=128, k=16>

%w4 = nvvm.wgmma.mma_async %dA+6,    %dB+384, %w3,    <m=64, n=128, k=16>

%w5 = nvvm.wgmma.mma_async %dA+512,  %dB,   , %r[1],  <m=64, n=128, k=16>

%w6 = nvvm.wgmma.mma_async %dA+514,  %dB+128, %w5,    <m=64, n=128, k=16>

%w7 = nvvm.wgmma.mma_async %dA+516,  %dB+256, %w6,    <m=64, n=128, k=16>

%w8 = nvvm.wgmma.mma_async %dA+518,  %dB+384, %w7,    <m=64, n=128, k=16>

nvvm.wgmma.commit.group.sync.aligned

nvvm.wgmma.wait.group.sync.aligned 1
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Building IR with Py bindings

Ch3.py: GEMM 128x128x64 

nvgpu.warpgroup.mma.store %C, %memref :   

          <fragmented = vector<64x64xf32>> 

          to memref<64x64xf32>
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 @NVDSL.mlir_gpu_launch(grid=(1,1,1), 

                        block=(128,1,1),smem=sz)

 def gemm_tma_kernel():

   tidx = gpu.thread_id(gpu.Dimension.x)

   isThread0 = tidx == 0   

   mbar_group = Mbarriers(number_of_barriers=1)

   mbar_group[0].init(1, predicate=isThread0)

   # 1. TMA Load for two input matrices

   tma_load(mbar_group, a_tma, b_tma, isThread0)

   # 2. All threads wait TMA load completion

   mbar_group[0].try_wait()

   a_smem = get_dynamic_shared_memory((M, K), T.f16())

   b_smem = get_dynamic_shared_memory((K, N), T.f16(), offset=off_b)

   # 3. Initialize 2 Input Matrices and Accumulator

   A = WGMMAMatrix(WGMMAType.Descriptor, [M,K], desc=a_tma, a_smem)

   B = WGMMAMatrix(WGMMAType.Descriptor, [K,N], desc=b_tma, b_smem)

   C = WGMMAMatrix(WGMMAType.Accumulator, shape=[M,N], ty=T.f32())

   # Matrix Multiply

   C += A @ B

   

   # 4. Stores fragmented registers to global memory by warpgroup

   C.store_accumulator(d_dev)



What about the performance?

Ch3.py: GEMM 128x128x64 
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Ch4.py: Multistage GEMM 
Shape = MxNxK, Tile = 128x128x64

Overlap Tensor Core and Data Load (TMA)

58Zero to Hero: Programming  Nvidia Tensor Core with MLIR NVGPU Dialect



Building IR with Py bindings

Ch4.py: Multistage GEMM 
Shape = MxNxK, Tile = 128x128x64

@NVDSL.mlir_gpu_launch(grid=grid,block=block,smem=...)

def gemm_multistage_kernel():

 mbar_group = init(x_tma, y_tma)

 prologue(mbar_group, x_tma, y_tma)

 D = mainloop(mbar_group, x_tma, y_tma)

 epilogue(D, z_dev)
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Building IR with Py bindings

Ch4.py: Multistage GEMM 
Prologue

def prologue(mbar_group: Mbarriers, 

             a_tma: TMA, b_tma: TMA):

 for iv in scf.for_(0, NUM_STAGES-1, 1):

   tma_load(mbar_group, a_tma, b_tma, iv, iv)

   scf.yield_([])
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Building IR with Py bindings

Ch4.py: Multistage GEMM 
Mainloop

def mainloop(x,y,z):

for ti in range(M//128):  # -> blockIdx.x

 for tj in range(N//128): # -> blockIdx.y

  D = 0

  for tk in range(K//64):

   for i in range(128):

    for j in range(128):

     for k in range(64):

      D += # mma

 

  z(ti:ti:128, tj:tj:128) = D
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Building IR with Py bindings

Ch4.py: Multistage GEMM 
Mainloop

def mainloop(x,y,z):

for ti in range(M//128):  # -> blockIdx.x

 for tj in range(N//128): # -> blockIdx.y

  D = 0

  for tk in range(K//64):

   for i in range(128):

    for j in range(128):

     for k in range(64):

      D += # mma

 

  z(ti:ti:128, tj:tj:128) = D

Tensor Core 
128x128x64 

Need a Loop
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Building IR with Py bindings

Ch4.py: Multistage GEMM 
Mainloop def mainloop(mbar_group: Mbarriers, x_tma: TMA, y_tma: TMA):

 ns = NUM_STAGES if NUM_STAGES == 1 else NUM_STAGES - 1

 tidx = gpu.thread_id(gpu.Dimension.x)

 begin_y = NUM_STAGES * get_type_size(x_tma.tma_memref)

 size_x = TILE_M * TILE_K * get_type_size(T.f16())

 pp = const(False, ty=T.bool())

 A = WGMMAMatrix(WGMMAType.Descriptor, [TILE_M, TILE_K], desc=a_tma)

 B = WGMMAMatrix(WGMMAType.Descriptor, [TILE_K, TILE_N], desc=b_tma)

 D = WGMMAMatrix(WGMMAType.Accumulator, [TILE_M, TILE_N], ty=T.f32())

  # Main Loop

 for_op = scf.ForOp(const(0), const(K // TILE_K), const(1), 

                    [D.acc_op, pp])

 with ir.InsertionPoint(for_op.body):

   # Main Loop BODY

   scf.yield_([D.acc_op, newPP])

 nvvm.WgmmaWaitGroupSyncOp(0)

 return D

def mainloop(x,y,z):

for ti in range(M//128):  # -> blockIdx.x

 for tj in range(N//128): # -> blockIdx.y

  D = 0

  for tk in range(K//64):

   for i in range(128):

    for j in range(128):

     for k in range(64):

      D += # mma

 

  z(ti:ti:128, tj:tj:128) = D
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Building IR with Py bindings

Ch4.py: Multistage GEMM 
Mainloop

   with ir.InsertionPoint(for_op.body):

       phase = for_op.inner_iter_args[1]

       iv = for_op.induction_variable

       stage = iv % NUM_STAGES

       # Wait for the current stage

       mbar_group[stage].try_wait(phase=phase)

       offX = stage * size_a

       offY = offset_a + begin_b

       a_smem = get_dynamic_shared_memory([TILE_M, TILE_K], T.f16(), offX)

       b_smem = get_dynamic_shared_memory([TILE_K, TILE_N], T.f16(), offY)

       # Iterate input matrices, update accumulator

       A.update_smem(a_smem)

       B.update_smem(b_smem)

       D.update_accumulator(for_op.inner_iter_args[0])

       # Matrix Multiply

       D += A @ B

       # Load next stage

       pred = ((iv + ns) < const(K // TILE_K)) & (tidx == 0)

       nextSlot = (iv + ns) % NUM_STAGES

       tma_load(mbar_group, a_tma, b_tma, nextSlot, (iv + ns), pred)

       # Switch phase parity for the mbarrier

       newPhase = arith.select( stage == (NUM_STAGES - 1),

                  (phase ^ const(True, ty=T.bool())), phase, )

       scf.yield_([D.acc_op, newPhase]) 64Zero to Hero: Programming  Nvidia Tensor Core with MLIR NVGPU Dialect

Start Building Mainloop IR



%13 = arith.remui %arg15, %c3 : index

nvgpu.mbarrier.try_wait.parity %6[%13], %arg17, %ticks 

Building IR with Py bindings

Ch4.py: Multistage GEMM 
Mainloop
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   with ir.InsertionPoint(for_op.body):

       phase = for_op.inner_iter_args[1]

       iv = for_op.induction_variable

       stage = iv % NUM_STAGES

       # Wait for the current stage

       mbar_group[stage].try_wait(phase=phase)

       offX = stage * size_a

       offY = offset_a + begin_b

       a_smem = get_dynamic_shared_memory([TILE_M, TILE_K], T.f16(), offX)

       b_smem = get_dynamic_shared_memory([TILE_K, TILE_N], T.f16(), offY)

       # Iterate input matrices, update accumulator

       A.update_smem(a_smem)

       B.update_smem(b_smem)

       D.update_accumulator(for_op.inner_iter_args[0])

       # Matrix Multiply

       D += A @ B

       # Load next stage

       pred = ((iv + ns) < const(K // TILE_K)) & (tidx == 0)

       nextSlot = (iv + ns) % NUM_STAGES

       tma_load(mbar_group, a_tma, b_tma, nextSlot, (iv + ns), pred)

       # Switch phase parity for the mbarrier

       newPhase = arith.select( stage == (NUM_STAGES - 1),

                  (phase ^ const(True, ty=T.bool())), phase, )

       scf.yield_([D.acc_op, newPhase])



Building IR with Py bindings

%A = nvgpu.warpgroup.generate.descriptor %x, %3 

      : memref<128x64xf16,>

%B = nvgpu.warpgroup.generate.descriptor %y, %4 

      : memref<64x128xf16,>

%D = nvgpu.warpgroup.mma %A, %B, %C {transposeB} 

  : <tensor = memref<128x64xf16  ,...>>, 

    <tensor = memref<64x128xf16  ,...>>, 

    <fragmented = vector<128x128xf32>> 

  -> <fragmented = vector<128x128xf32>>

Ch4.py: Multistage GEMM 
Mainloop
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   with ir.InsertionPoint(for_op.body):

       phase = for_op.inner_iter_args[1]

       iv = for_op.induction_variable

       stage = iv % NUM_STAGES

       # Wait for the current stage

       mbar_group[stage].try_wait(phase=phase)

       offX = stage * size_a

       offY = offset_a + begin_b

       a_smem = get_dynamic_shared_memory([TILE_M, TILE_K], T.f16(), offX)

       b_smem = get_dynamic_shared_memory([TILE_K, TILE_N], T.f16(), offY)

       # Iterate input matrices, update accumulator

       A.update_smem(a_smem)

       B.update_smem(b_smem)

       D.update_accumulator(for_op.inner_iter_args[0])

       # Matrix Multiply

       D += A @ B

       # Load next stage

       pred = ((iv + ns) < const(K // TILE_K)) & (tidx == 0)

       nextSlot = (iv + ns) % NUM_STAGES

       tma_load(mbar_group, a_tma, b_tma, nextSlot, (iv + ns), pred)

       # Switch phase parity for the mbarrier

       newPhase = arith.select( stage == (NUM_STAGES - 1),

                  (phase ^ const(True, ty=T.bool())), phase, )

       scf.yield_([D.acc_op, newPhase])



Building IR with Py bindings

Ch4.py: Multistage GEMM 
Mainloop
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   with ir.InsertionPoint(for_op.body):

       phase = for_op.inner_iter_args[1]

       iv = for_op.induction_variable

       stage = iv % NUM_STAGES

       # Wait for the current stage

       mbar_group[stage].try_wait(phase=phase)

       offX = stage * size_a

       offY = offset_a + begin_b

       a_smem = get_dynamic_shared_memory([TILE_M, TILE_K], T.f16(), offX)

       b_smem = get_dynamic_shared_memory([TILE_K, TILE_N], T.f16(), offY)

       # Iterate input matrices, update accumulator

       A.update_smem(a_smem)

       B.update_smem(b_smem)

       D.update_accumulator(for_op.inner_iter_args[0])

       # Matrix Multiply

       D += A @ B

       # Load next stage

       pred = ((iv + ns) < const(K // TILE_K)) & (tidx == 0)

       nextSlot = (iv + ns) % NUM_STAGES

       tma_load(mbar_group, a_tma, b_tma, nextSlot, (iv + ns), pred)

       # Switch phase parity for the mbarrier

       newPhase = arith.select( stage == (NUM_STAGES - 1),

                  (phase ^ const(True, ty=T.bool())), phase, )

       scf.yield_([D.acc_op, newPhase])



Building IR with Py bindings

Ch4.py: Multistage GEMM 
Epilogue
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def epilogue(D: WGMMAMatrix, d_dev):

   tidx = gpu.thread_id(gpu.Dimension.x)

   dimX, dimY = partition_shape()

   d_smem = get_dynamic_shared_memory([TILE_M, TILE_N], T.f32())

   d_gmem = memref.subview(d_dev,[dimX, dimY],[TILE_M,TILE_N],[1, 1])

   # Store (registers -> shared memory)

   D.store_accumulator(d_smem)

   gpu.barrier()

   # Store (shared memory --> global memory)

   for i in scf.for_(0, TILE_M, 1):

       val = memref.load(d_smem, [i, tidx])

       memref.store(val, d_gmem, [i, tidx])

       scf.yield_([])

Steps:
1. Stores registers -> shared memory

2. Store shared memory tile -> global memory



Performance of Ch4.py

Single Stage vs Multi Stage 
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Benchmark 
Effect of Multistage vs Single Stage

Shape: (K varies)
● 7296 x 256 x K

Operation:
● F32 += F16 * F16

Tile Size:
● 128 x 128 x 64
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Ch4.py vs NVIDIA cuBLAS
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cuBLAS vs MLIR

Operation:
● F32 += F16 * F16

Tile Size:
● 128 x 128 x 64

Ch4.py
● Multistage Kernel

72
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Ch5.py: Warp Specialized GEMM
1 Producer + 1 Consumer Warpgroups

73

Thread Block has 2 Warpgroups (256 threads): 
1. Producer Warpgroup → Performs TMA
2. Consumer Warpgroup → Performs Tensor Core 



Building IR with Py bindings

Ch5.py: Warp Specialized GEMM
1 Producer + 1 Consumer Warpgroups

   def gemm_warp_specialized_kernel():

       wg_producer = Warpgroup(primaryThread = 128, regSize = 40)

       wg_consumer = Warpgroup(primaryThread = 0,   regSize = 232)

       mbar_group_mma, mbar_group_tma = bootstrap(a_tma, b_tma)

       # Producer performs TMA

       with wg_producer:

           producer_loop(mbar_group_tma, mbar_group_mma,

                         a_tma,b_tma, wg_producer)

       # Consumer performs MMA/Tensor Core

       with wg_consumer:

           D = consumer_loop(mbar_group_tma, mbar_group_mma,

                             a_tma,b_tma, wg_consumer)

           epilogue(D, d_dev)
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Ch4.py vs Ch5.py

Operation:
● F32 += F16 * F16

Tile Size:
● 128 x 128 x 64

Ch4.py
● Multistage Kernel

Ch5.py
● Warp Specialized

75
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What is next?
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Ch6.py: Warp Specialized Persistent Ping-Pong GEMM (WIP)
1 Producer and 2 Consumers Warpgroups
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Thread Block has 3 Warpgroups (384 threads): 
Consumers Warpgroups MMA ←→ Epilogue



Use MLIR’s NVGPU Dialect with Python

Targeting NVIDIA Hopper in MLIR 78

NVGPU and NVVM Dialects
🔥 Hopper GPU Support

Unlocking Hopper's Power: MLIR's Python Binding
🔀 Seamlessly Express Multistage and Warp Specialization!

Peak performance 
🚀 Achieve cuBLAS-Level performance



.
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MLIR Upstream Dialect Layers
What happens after NVVM Dialect?

Targeting NVIDIA Hopper in MLIR

Today we will program
● Python → NVGPU → NVVM

LLVM doesn’t have 
Hopper intrinsics

BasicPtxBuilder generates 
inline assembly

😔
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https://emojipedia.org/pensive-face


New Interface: 
BasicPtxBuilder 

Targeting NVIDIA Hopper in MLIR

  def NVVM_MBarrierArriveExpectTxOp : NVVM_Op<"mbarrier.arrive.expect_tx",

                 [DeclareOpInterfaceMethods<BasicPtxBuilderOpInterface>]> 

  

  Arguments<(ins LLVM_i64ptr_any:$addr, I32:$txcount, PtxPredicate:$predicate)> {

  let assemblyFormat = 

      "$addr `,` $txcount (`,` `predicate` `=` $predicate^)? attr-dict `:` type(operands)" ;

  

  let extraClassDefinition = [{

      std::string $cppClass::getPtx() { 

        return std::string("mbarrier.arrive.expect_tx.b64 _, [%0], %1;"); }

      }];

  }

Builds PTX automatically (no C++ need)

Generates register constraints: 
"h" = .u16 reg

"r" = .u32 reg

"l" = .u64 reg

etc.

Generates read/write
"r"(y) read

"+r"(y) readwrite

"=r"(y) write

Supports predicates
@%p opcode

PTX instruction 
Arguments are placed 
automatically 

Predicate is automatically placed
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