
Guray Ozen

Zero to Hero:
Programming
Nvidia Hopper with
MLIR’s NVGPU Dialect

10-11th April 24
EuroLLVM Meeting 2024

1

A big thank you to

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect 2

Huang’s Law [1, 2]

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

[1] https://en.wikipedia.org/wiki/Huang%27s_law
[2] Hardware for Deep Learning, Bill Dally, HotChips

3

https://en.wikipedia.org/wiki/Huang%27s_law

Huang’s Law [1, 2]

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

[1] https://en.wikipedia.org/wiki/Huang%27s_law
[2] Hardware for Deep Learning, Bill Dally, HotChips

4

https://en.wikipedia.org/wiki/Huang%27s_law

Evolution in Hardware:
NVIDIA Hopper Architecture

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

4th gen Tensor Core
● Warpgroup level (128 threads) PTX instructions
● Matrix A or B can be shared memory or registers
● Supports transpose for f16

Thread Block Clusters
● Clustering helps reusing data on L2

Tensor Memory Accelerator (TMA)
● Load a tile asynchronously
● Not wasting registers
● Swizzling 32b, 64b, 128b

Asynchronous Barriers
● Helps waiting TMA asynchronously

5

Evolution in Software:
PTX[1] & CUTLASS[2]

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Significantly growed

1. Lifespan of Ampere (~2 years)

2. Hopper Architecture

Did MLIR & LLVM keep up?

[1] Compared pages and table-2 in PTX pdf
[2] Used cloc for LoC

Ampere Hopper

��
6

MLIR has gained Hopper Support

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

NVGPU and NVVM Dialects
🔥 Hopper GPU Support

Performance
🚀 MLIR has close performance to cuBLAS

Upstream
✅ All the work presented is fully upstreamed to MLIR

7

8

What We Will Discover in Tutorial
Navigating Zero to Hero

Me no Hopper GPU

NVGPU dialect
Multistage Kernel
Warp Specialized Kernel
Get cuBLAS like Performance

MLIR Upstream Dialect Layers
Improved GPU, NVGPU, and NVVM Dialects

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

NVGPU Dialect
● High level operations for Tensor Core, TMA
● NVGPU → NVVM

NVVM Dialect
● Low level operations (closer to PTX)
● NVVM → PTX or LLVM intrinsic

GPU Dialect
● Kernel launch, Cluster launch
● Driver communication

9

MLIR Upstream Dialect Layers
Let’s program NVGPU with python bindings

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Today we will program
● Python → NVGPU → NVVM

10

MLIR Upstream Dialect Layers
Connect Your Dialect → NVGPU

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

One can lower other dialects into NVGPU
● Vector → NVGPU → NVVM
● Linalg → NVGPU → NVVM
● Your Dialect 1 → NVGPU → NVVM

Today we will program
● Python → NVGPU → NVVM

11

Py + MLIR vs CUTLASS
Dialects vs Layer Comparison

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect 12

→ Setup interface on
 Host

→ Launch kernel,
 calculate the grid
 and smem

→ Tensor core,
TMA load/store

→ PTX instruction

→ Numerical
conversion, fast math, …

→ Pipeline matmul,
 main loop,
 epilogue

CUTLASS MLIR NVGPU + Py

Device

@NVDSL.mlir_func
def gemm(x, y, z):
 # Setups and Calls Kernel

Kernel

@NVDSL.mlir_gpu_launch(...)
def gemm_kernel()
 # Kernel Body

Collective

Multistage:
 def prologue() # has nvgpu OPs
 def mainloop() # has nvgpu OPs
 def epilogue() # has nvgpu OPs

Warp Specialized:
 def producer_loop() # has nvgpu OPs
 def consumer_loop() # has nvgpu OPs

Atom NVGPU Dialect

Thread .

Intrinsic NVVM Dialect

Program NVGPU Dialect
With Python Bindings

P 13

Tutorials : #87065 is about the be upstreamed

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Codes are here: {your-llvm-path}/mlir/test/Examples/nvgpu

● Ch0.py → Hello World

● Ch1.py → 2D Saxpy

● Ch2.py → 2D Saxpy with TMA

● Ch3.py → GEMM 128x128x64 Tensor Core and TMA

● Ch4.py → GEMM Multistage

● Ch5.py → GEMM Warp Specialized

● Ch6.py → GEMM Warp Specialized Persistent ping-pong (WIP)

14

https://github.com/llvm/llvm-project/pull/87065

NVDSL : Simplify NVGPU Dialect usage
We focus on Hopper Performance:

Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Simplifies:
● Simplify MLIR Host Function (func.func) IR Building

● JIT Compilation and Execution

● Operator Overloading with Arith Dialect for Readable Code

● Easy GPU IR (gpu.launch) Building

15

Regular Python code

def saxpy(y, x, alpha):

 for i in range(256):

 for j in range(32):

 y[i, j] += alpha * x[i, j]

Use numpy arrays

x = np.ones((256 32), np.float32)

y = np.ones((256 32), np.float32)

saxpy(x, y, 2.0)

Ch1.py: 2D SAXPY
Single-Precision A·X Plus Y (SAXPY)

16Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Ch1.py: 2D SAXPY
Single-Precision A·X Plus Y (SAXPY)

Building IR with Py bindings

@NVDSL.mlir_func

def saxpy(x, y, alpha):

 # 1. Use MLIR GPU dialect to allocate and copy memory

 t1 = gpu.wait(token_ty, [])

 x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [], [])

 y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [])

 t4 = gpu.memcpy(token_ty, [t3], x_dev, x)

 t5 = gpu.memcpy(token_ty, [t4], y_dev, y)

 t6 = gpu.wait(token_ty, [t5])

 # 2. Compute 2D SAXPY kernel

 @NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1))

 def saxpy_kernel():

 bidx = gpu.block_id(gpu.Dimension.x)

 tidx = gpu.thread_id(gpu.Dimension.x)

 x_val = memref.load(x_dev, [bidx, tidx])

 y_val = memref.load(y_dev, [bidx, tidx])

 y_val += x_val * alpha

 memref.store(y_val, y_dev, [bidx, tidx])

 saxpy_kernel()

 t7 = gpu.memcpy(token_ty, [t6], y, y_dev)

 gpu.wait(token_ty, [t7])

Regular Python code

def saxpy(y, x, alpha):

 for i in range(256): # -> blockIdx.x

 for j in range(32): # -> threadIdx.x

 y[i, j] += alpha * x[i, j]

Use numpy arrays

x = np.ones((256 32), np.float32)

y = np.ones((256 32), np.float32)

saxpy(x, y, 2.0)

Let’s write
in MLIR

17Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

Ch1.py: 2D SAXPY
Build Host IR

This Decorator (@NVDSL.mlir_func) builds:

func.func @saxpy(%arg_x: memref<256x32xf32>,

 %arg_y: memref<256x32xf32>,

 %alpha: f32)

@NVDSL.mlir_func

def saxpy(x, y, alpha):

 # 1. Use MLIR GPU dialect to allocate and copy memory

 t1 = gpu.wait(token_ty, [])

 x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [], [])

 y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [])

 t4 = gpu.memcpy(token_ty, [t3], x_dev, x)

 t5 = gpu.memcpy(token_ty, [t4], y_dev, y)

 t6 = gpu.wait(token_ty, [t5])

 # 2. Compute 2D SAXPY kernel

 @NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1))

 def saxpy_kernel():

 bidx = gpu.block_id(gpu.Dimension.x)

 tidx = gpu.thread_id(gpu.Dimension.x)

 x_val = memref.load(x_dev, [bidx, tidx])

 y_val = memref.load(y_dev, [bidx, tidx])

 y_val += x_val * alpha

 memref.store(y_val, y_dev, [bidx, tidx])

 saxpy_kernel()

 t7 = gpu.memcpy(token_ty, [t6], y, y_dev)

 gpu.wait(token_ty, [t7]) 18Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

Ch1.py: 2D SAXPY
Build Host IR
func.func @saxpy(%arg_x: memref<256x32xf32>,

%arg_y: memref<256x32xf32>, %alpha: f32) {

 %t1 = gpu.wait async

 %z_dev, %t2 = gpu.alloc async [%t1] () : memref<256x32xf32>

 %y_dev, %t3 = gpu.alloc async [%t2] () : memref<256x32xf32>

 %t4 = gpu.memcpy async [%t3] %x_dev, %arg_x

 : memref<256x32xf32>, memref<256x32xf32>

 %t5 = gpu.memcpy async [%t4] %y_dev, %arg_y

 : memref<256x32xf32>, memref<256x32xf32>

 %t6 = gpu.wait async [%t5]

@NVDSL.mlir_func

def saxpy(x, y, alpha):

 # 1. Use MLIR GPU dialect to allocate and copy memory

 t1 = gpu.wait(token_ty, [])

 x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [], [])

 y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [])

 t4 = gpu.memcpy(token_ty, [t3], x_dev, x)

 t5 = gpu.memcpy(token_ty, [t4], y_dev, y)

 t6 = gpu.wait(token_ty, [t5])

 # 2. Compute 2D SAXPY kernel

 @NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1))

 def saxpy_kernel():

 bidx = gpu.block_id(gpu.Dimension.x)

 tidx = gpu.thread_id(gpu.Dimension.x)

 x_val = memref.load(x_dev, [bidx, tidx])

 y_val = memref.load(y_dev, [bidx, tidx])

 y_val += x_val * alpha

 memref.store(y_val, y_dev, [bidx, tidx])

 saxpy_kernel()

 t7 = gpu.memcpy(token_ty, [t6], y, y_dev)

 gpu.wait(token_ty, [t7]) 19Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

Ch1.py: 2D SAXPY
Build Host IR
func.func @saxpy(%arg_x: memref<256x32xf32>,

%arg_y: memref<256x32xf32>, %alpha: f32) {

 %t1 = gpu.wait async

 %z_dev, %t2 = gpu.alloc async [%t1] () : memref<256x32xf32>

 %y_dev, %t3 = gpu.alloc async [%t2] () : memref<256x32xf32>

 %t4 = gpu.memcpy async [%t3] %x_dev, %arg_x

 : memref<256x32xf32>, memref<256x32xf32>

 %t5 = gpu.memcpy async [%t4] %y_dev, %arg_y

 : memref<256x32xf32>, memref<256x32xf32>

 %t6 = gpu.wait async [%t5]

@NVDSL.mlir_func

def saxpy(x, y, alpha):

 # 1. Use MLIR GPU dialect to allocate and copy memory

 t1 = gpu.wait(token_ty, [])

 x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [], [])

 y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [])

 t4 = gpu.memcpy(token_ty, [t3], x_dev, x)

 t5 = gpu.memcpy(token_ty, [t4], y_dev, y)

 t6 = gpu.wait(token_ty, [t5])

 # 2. Compute 2D SAXPY kernel

 @NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1))

 def saxpy_kernel():

 bidx = gpu.block_id(gpu.Dimension.x)

 tidx = gpu.thread_id(gpu.Dimension.x)

 x_val = memref.load(x_dev, [bidx, tidx])

 y_val = memref.load(y_dev, [bidx, tidx])

 y_val += x_val * alpha

 memref.store(y_val, y_dev, [bidx, tidx])

 saxpy_kernel()

 t7 = gpu.memcpy(token_ty, [t6], y, y_dev)

 gpu.wait(token_ty, [t7])

%t7 = gpu.memcpy async [%t6] %arg_y, %y_dev

 : memref<256x32xf32>, memref<256x32xf32>

gpu.wait async [%t7]

20Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

Ch1.py: 2D SAXPY
Build GPU Kernel IR

This Decorator (@NVDSL.mlir_gpu_launch) builds:

gpu.launch blocks(256,1,1) threads(32, 1, 1) {

}

@NVDSL.mlir_func

def saxpy(x, y, alpha):

 # 1. Use MLIR GPU dialect to allocate and copy memory

 t1 = gpu.wait(token_ty, [])

 x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [], [])

 y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [])

 t4 = gpu.memcpy(token_ty, [t3], x_dev, x)

 t5 = gpu.memcpy(token_ty, [t4], y_dev, y)

 t6 = gpu.wait(token_ty, [t5])

 # 2. Compute 2D SAXPY kernel

 @NVDSL.mlir_gpu_launch(grid=(M,1,1), block=(N,1,1))

 def saxpy_kernel():

 bidx = gpu.block_id(gpu.Dimension.x)

 tidx = gpu.thread_id(gpu.Dimension.x)

 x_val = memref.load(x_dev, [bidx, tidx])

 y_val = memref.load(y_dev, [bidx, tidx])

 y_val += x_val * alpha

 memref.store(y_val, y_dev, [bidx, tidx])

 saxpy_kernel()

 t7 = gpu.memcpy(token_ty, [t6], y, y_dev)

 gpu.wait(token_ty, [t7]) 21Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

Ch1.py: 2D SAXPY
Build GPU Kernel IR

Inside the decorator function is the GPU Kernel:

gpu.launch blocks(256,1,1) threads(32, 1, 1) {

 %bidx = gpu.block_id x

 %tidx = gpu.thread_id x

 %6 = memref.load %x_dev[%bidx, %tidx] : memref<256x32xf32>

 %7 = memref.load %y_dev[%bidx, %tidx] : memref<256x32xf32>

 %8 = arith.mulf %6, %alpha : f32

 %9 = arith.addf %7, %8 : f32

 memref.store %9, %y_dev[%bidx, %tidx] : memref<256x32xf32>

 gpu.terminator

}

@NVDSL.mlir_func

def saxpy(x, y, alpha):

 # 1. Use MLIR GPU dialect to allocate and copy memory

 t1 = gpu.wait(token_ty, [])

 x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [], [])

 y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [])

 t4 = gpu.memcpy(token_ty, [t3], x_dev, x)

 t5 = gpu.memcpy(token_ty, [t4], y_dev, y)

 t6 = gpu.wait(token_ty, [t5])

 # 2. Compute 2D SAXPY kernel

 @NVDSL.mlir_gpu_launch(grid=(M,1,1), block=(N,1,1))

 def saxpy_kernel():

 bidx = gpu.block_id(gpu.Dimension.x)

 tidx = gpu.thread_id(gpu.Dimension.x)

 x_val = memref.load(x_dev, [bidx, tidx])

 y_val = memref.load(y_dev, [bidx, tidx])

 y_val += x_val * alpha

 memref.store(y_val, y_dev, [bidx, tidx])

 saxpy_kernel()

 t7 = gpu.memcpy(token_ty, [t6], y, y_dev)

 gpu.wait(token_ty, [t7]) 22Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

Ch1.py: 2D SAXPY
Build GPU Kernel IR

DSL overloads operators with arith.* dialect:

gpu.launch blocks(256,1,1) threads(32, 1, 1) {

 %bidx = gpu.block_id x

 %tidx = gpu.thread_id x

 %6 = memref.load %x_dev[%bidx, %tidx] : memref<256x32xf32>

 %7 = memref.load %y_dev[%bidx, %tidx] : memref<256x32xf32>

 %8 = arith.mulf %6, %alpha : f32

 %9 = arith.addf %7, %8 : f32

 memref.store %9, %y_dev[%bidx, %tidx] : memref<256x32xf32>

 gpu.terminator

}

@NVDSL.mlir_func

def saxpy(x, y, alpha):

 # 1. Use MLIR GPU dialect to allocate and copy memory

 t1 = gpu.wait(token_ty, [])

 x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [], [])

 y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [])

 t4 = gpu.memcpy(token_ty, [t3], x_dev, x)

 t5 = gpu.memcpy(token_ty, [t4], y_dev, y)

 t6 = gpu.wait(token_ty, [t5])

 # 2. Compute 2D SAXPY kernel

 @NVDSL.mlir_gpu_launch(grid=(256,1,1), block=(32,1,1))

 def saxpy_kernel():

 bidx = gpu.block_id(gpu.Dimension.x)

 tidx = gpu.thread_id(gpu.Dimension.x)

 x_val = memref.load(x_dev, [bidx, tidx])

 y_val = memref.load(y_dev, [bidx, tidx])

 y_val += x_val * alpha

 memref.store(y_val, y_dev, [bidx, tidx])

 saxpy_kernel()

 t7 = gpu.memcpy(token_ty, [t6], y, y_dev)

 gpu.wait(token_ty, [t7]) 23Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

Ch1.py: 2D SAXPY
Python calls MLIR func and pass parameters @NVDSL.mlir_func

def saxpy(x, y, alpha):

 # MLIR function body …

3. Pass numpy arrays to MLIR

alpha = 2.0

x = np.ones((256, 32), np.float32)

y = np.ones((256, 32), np.float32)

ref = np.ones((256, 32), np.float32)

saxpy(x, y, alpha)

4. Verify MLIR with reference computation

ref += x * alpha

np.testing.assert_allclose(y, ref, rtol=5e-03, atol=1e-01)

print("PASS")

CHECK-NOT: Mismatched elements

Decorator (@NVDSL.mlir_func):
numpy arrays -> memref
JIT compiles
Executes

24Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

Ch1.py: 2D SAXPY
Python calls MLIR func and pass parameters @NVDSL.mlir_func

def saxpy(x, y, alpha):

 # MLIR function body …

3. Pass numpy arrays to MLIR

alpha = 2.0

x = np.ones((256, 32), np.float32)

y = np.ones((256, 32), np.float32)

ref = np.ones((256, 32), np.float32)

saxpy(x, y, alpha)

4. Verify MLIR with reference computation

ref += x * alpha

np.testing.assert_allclose(y, ref, rtol=5e-03, atol=1e-01)

print("PASS")

CHECK-NOT: Mismatched elements

Verify the Result

25Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Decorator (@NVDSL.mlir_func):
numpy arrays -> memref
JIT compiles
Executes

Building IR with Py bindings

Ch1.py: 2D SAXPY
Execute @NVDSL.mlir_func

def saxpy(x, y, alpha):

 # MLIR function body …

3. Pass numpy arrays to MLIR

alpha = 2.0

x = np.ones((256, 32), np.float32)

y = np.ones((256, 32), np.float32)

ref = np.ones((256, 32), np.float32)

saxpy(x, y, alpha)

4. Verify MLIR with reference computation

ref += x * alpha

np.testing.assert_allclose(y, ref, rtol=5e-03, atol=1e-01)

print("PASS")

CHECK-NOT: Mismatched elements

26Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

$> python Ch1.py
 PASS

Ch2.py: 2D SAXPY with TMA
Now let TMA load the data

Non-Regular Python code

def saxpy(y, x, alpha):

 x_smem = # TMA loads ‘x’ <32xf32> to shared memory

 y_smem = # TMA loads ‘y’ <32xf32> to shared memory

 for i in range(256):

 for j in range(32):

 y[i, j] = y_tma[i, j] + alpha * x_smem[i, j]

Let’s use NVIDIA Hopper TMA to
load data

27Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings
class TMA:

 def __init__(self, shape, memref_ty,

 swizzle=nvgpu.TensorMapSwizzleKind.SWIZZLE_NONE,

 l2promo=nvgpu.TensorMapL2PromoKind.L2PROMO_NONE,

 oob=nvgpu.TensorMapOOBKind.OOB_ZERO,

 interleave=nvgpu.TensorMapInterleaveKind.INTERLEAVE_NONE,

): # init …

 @property

 def tensormap_descriptor_ty(self):

 memref_str = f"memref<{self.tma_shape[0]}x{self.tma_shape[1]}, 3>"

 parse_str = f"!nvgpu.tensormap.descriptor<tensor = {memref_str},swizzle = {self.swizzle},\

 l2promo = {self.l2promo},oob = {self.oob},interleave = {self.interleave}>"

 return ir.Type.parse(parse_str)

 def create_descriptor(self, device_ptr):

 tma_descriptor_ty = self.tensormap_descriptor_ty

 device_unranked_memref = memref.CastOp(ir.UnrankedMemRefType.get(

 self.memref_ty.element_type,

 self.memref_ty.memory_space), device_ptr)

 self.tma_descriptor = nvgpu.TmaCreateDescriptorOp(tma_descriptor_ty,

 device_unranked_memref,map(const, self.tma_shape))

def prefetch(self, predicate=None):

 nvgpu.tma_prefetch_descriptor(self.tma_descriptor, predicate=predicate)

def load(self, dest, mbarrier: Mbarriers, coords=[0, 0], predicate=None):

 nvgpu.TmaAsyncLoadOp(dest,mbarrier.mbar_group_op,self.tma_descriptor,

 coordinates=map(const, coords),mbarId=mbarrier.id_op, predicate=predicate,

)

Ch2.py: 2D SAXPY with TMA
TMA OPs and TMA class in NVDSL

28Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

nvgpu.tma.create.descriptor

● Host calls the CUDA driver, it triggers the function

cuTensorMapEncodeTiled.

nvgpu.tma.prefetch

● Prefetch TMA descriptor to L1 cache

nvgpu.tma.async.load

● Loads 1D - 5D tile

● Supports predicated execution

● Lowered:
nvvm.cp.async.bulk.tensor.shared.cluster.global

Building IR with Py bindingsclass TMA:

 def __init__(self, shape, memref_ty,

 swizzle=nvgpu.TensorMapSwizzleKind.SWIZZLE_NONE,

 l2promo=nvgpu.TensorMapL2PromoKind.L2PROMO_NONE,

 oob=nvgpu.TensorMapOOBKind.OOB_ZERO,

 interleave=nvgpu.TensorMapInterleaveKind.INTERLEAVE_NONE,

): # init …

 @property

 def tensormap_descriptor_ty(self):

 memref_str = f"memref<{self.tma_shape[0]}x{self.tma_shape[1]}, 3>"

 parse_str = f"!nvgpu.tensormap.descriptor<tensor = {memref_str},swizzle = {self.swizzle},\

 l2promo = {self.l2promo},oob = {self.oob},interleave = {self.interleave}>"

 return ir.Type.parse(parse_str)

 def create_descriptor(self, device_ptr):

 tma_descriptor_ty = self.tensormap_descriptor_ty

 device_unranked_memref = memref.CastOp(ir.UnrankedMemRefType.get(

 self.memref_ty.element_type,

 self.memref_ty.memory_space), device_ptr)

 self.tma_descriptor = nvgpu.TmaCreateDescriptorOp(tma_descriptor_ty,

 device_unranked_memref,map(const, self.tma_shape))

def prefetch(self, predicate=None):

 nvgpu.tma_prefetch_descriptor(self.tma_descriptor, predicate=predicate)

def load(self, dest, mbarrier: Mbarriers, coords=[0, 0], predicate=None):

 nvgpu.TmaAsyncLoadOp(dest,mbarrier.mbar_group_op,self.tma_descriptor,

 coordinates=map(const, coords),mbarId=mbarrier.id_op, predicate=predicate,

)

Ch2.py: 2D SAXPY with TMA
TMA OPs and TMA class in NVDSL

nvgpu.tma.create.descriptor

● Host calls the CUDA driver, it triggers the function

cuTensorMapEncodeTiled.

nvgpu.tma.prefetch

● Prefetch TMA descriptor to L1 cache

nvgpu.tma.async.load

● Loads 1D - 5D tile

● Supports predicated execution

● Lowered:
nvvm.cp.async.bulk.tensor.shared.cluster.global

29Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

Ch2.py: 2D SAXPY with TMA
TMA OPs and TMA class in NVDSL

nvgpu.tma.create.descriptor

● Host calls the CUDA driver, it triggers the function

cuTensorMapEncodeTiled.

nvgpu.tma.prefetch

● Prefetch TMA descriptor to L1 cache

nvgpu.tma.async.load

● Loads 1D - 5D tile

● Supports predicated execution

● Lowered:
nvvm.cp.async.bulk.tensor.shared.cluster.global

class TMA:

 def __init__(self, shape, memref_ty,

 swizzle=nvgpu.TensorMapSwizzleKind.SWIZZLE_NONE,

 l2promo=nvgpu.TensorMapL2PromoKind.L2PROMO_NONE,

 oob=nvgpu.TensorMapOOBKind.OOB_ZERO,

 interleave=nvgpu.TensorMapInterleaveKind.INTERLEAVE_NONE,

): # init …

 @property

 def tensormap_descriptor_ty(self):

 memref_str = f"memref<{self.tma_shape[0]}x{self.tma_shape[1]}, 3>"

 parse_str = f"!nvgpu.tensormap.descriptor<tensor = {memref_str},swizzle = {self.swizzle},\

 l2promo = {self.l2promo},oob = {self.oob},interleave = {self.interleave}>"

 return ir.Type.parse(parse_str)

 def create_descriptor(self, device_ptr):

 tma_descriptor_ty = self.tensormap_descriptor_ty

 device_unranked_memref = memref.CastOp(ir.UnrankedMemRefType.get(

 self.memref_ty.element_type,

 self.memref_ty.memory_space), device_ptr)

 self.tma_descriptor = nvgpu.TmaCreateDescriptorOp(tma_descriptor_ty,

 device_unranked_memref,map(const, self.tma_shape))

def prefetch(self, predicate=None):

 nvgpu.tma_prefetch_descriptor(self.tma_descriptor, predicate=predicate)

def load(self, dest, mbarrier: Mbarriers, coords=[0, 0], predicate=None):

 nvgpu.TmaAsyncLoadOp(dest,mbarrier.mbar_group_op,self.tma_descriptor,

 coordinates=map(const, coords),mbarId=mbarrier.id_op, predicate=predicate,

)

30Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

Ch2.py: 2D SAXPY with TMA
TMA OPs and TMA class in NVDSL

nvgpu.tma.create.descriptor

● Host calls the CUDA driver, it triggers the function

cuTensorMapEncodeTiled.

nvgpu.tma.prefetch

● Prefetch TMA descriptor to L1 cache

nvgpu.tma.async.load

● Loads 1D - 5D tile

● Supports predicated execution

● Lowered:
nvvm.cp.async.bulk.tensor.shared.cluster.global

class TMA:

 def __init__(self, shape, memref_ty,

 swizzle=nvgpu.TensorMapSwizzleKind.SWIZZLE_NONE,

 l2promo=nvgpu.TensorMapL2PromoKind.L2PROMO_NONE,

 oob=nvgpu.TensorMapOOBKind.OOB_ZERO,

 interleave=nvgpu.TensorMapInterleaveKind.INTERLEAVE_NONE,

): # init …

 @property

 def tensormap_descriptor_ty(self):

 memref_str = f"memref<{self.tma_shape[0]}x{self.tma_shape[1]}, 3>"

 parse_str = f"!nvgpu.tensormap.descriptor<tensor = {memref_str},swizzle = {self.swizzle},\

 l2promo = {self.l2promo},oob = {self.oob},interleave = {self.interleave}>"

 return ir.Type.parse(parse_str)

 def create_descriptor(self, device_ptr):

 tma_descriptor_ty = self.tensormap_descriptor_ty

 device_unranked_memref = memref.CastOp(ir.UnrankedMemRefType.get(

 self.memref_ty.element_type,

 self.memref_ty.memory_space), device_ptr)

 self.tma_descriptor = nvgpu.TmaCreateDescriptorOp(tma_descriptor_ty,

 device_unranked_memref,map(const, self.tma_shape))

def prefetch(self, predicate=None):

 nvgpu.tma_prefetch_descriptor(self.tma_descriptor, predicate=predicate)

def load(self, dest, mbarrier: Mbarriers, coords=[0, 0], predicate=None):

 nvgpu.TmaAsyncLoadOp(dest,mbarrier.mbar_group_op,self.tma_descriptor,

 coordinates=map(const, coords),mbarId=mbarrier.id_op, predicate=predicate,

)

31Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Ch2.py: 2D SAXPY with TMA
Mbarrier OPs and Mbarrier class in NVDSL

nvgpu.mbarrier.create

● Allows creating multiple mbarriers

○ %mbarGroup = nvgpu.mbarrier.create <...,

num_barriers = 7>

nvgpu.mbarrier.init | arrive | try_wait

● Convenient access to mbarriers with SSA index. Ideal for

handling multiple barriers within a loop

○ nvgpu.mbarrier.init %mbarGroup[%mbar_id]

● Provides support for predication

○ nvgpu.mbarrier.expect_tx

%mbarGroup[%mbar_id] predicate = %tidx0

32Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

class Mbarriers:

 def __init__(self, number_of_barriers=1):

 self.mbar_ty = …

 self.number_of_barriers = number_of_barriers

 self.mbar_group_op = nvgpu.mbarrier_create(self.mbar_ty)

 def __getitem__(self, key):

 self.id_op = const(key)

 return self

 def init(self, count: int, predicate=None):

 count_op = const(count)

 nvgpu.mbarrier_init(self.mbar_group_op, count_op, self.id_op…)

 def arrive(self, txcount: int = 0, predicate=None):

 if txcount != 0:

 txcount_op = const(txcount)

 nvgpu.mbarrier_arrive_expect_tx(

 self.mbar_group_op, txcount_op, self.id_op, predicate=predicate

)

 def try_wait(self, phase: bool = False, ticks: int = 10000000):

 nvgpu.MBarrierTryWaitParityOp(...)

Building IR with Py bindings

Ch2.py: 2D SAXPY with TMA
Mbarrier OPs and Mbarrier class in NVDSL

nvgpu.mbarrier.create

● Allows creating multiple mbarriers

○ %mbarGroup = nvgpu.mbarrier.create <...,

num_barriers = 7>

nvgpu.mbarrier.init | arrive | try_wait

● Convenient access to mbarriers with SSA index. Ideal for

handling multiple barriers within a loop

○ nvgpu.mbarrier.init %mbarGroup[%mbar_id]

● Provides support for predication

○ nvgpu.mbarrier.expect_tx

%mbarGroup[%mbar_id] predicate = %tidx0

class Mbarriers:

 def __init__(self, number_of_barriers=1):

 self.mbar_ty = …

 self.number_of_barriers = number_of_barriers

 self.mbar_group_op = nvgpu.mbarrier_create(self.mbar_ty)

 def __getitem__(self, key):

 self.id_op = const(key)

 return self

 def init(self, count: int, predicate=None):

 count_op = const(count)

 nvgpu.mbarrier_init(self.mbar_group_op, count_op, self.id_op…)

 def arrive(self, txcount: int = 0, predicate=None):

 if txcount != 0:

 txcount_op = const(txcount)

 nvgpu.mbarrier_arrive_expect_tx(

 self.mbar_group_op, txcount_op, self.id_op, predicate=predicate

)

 def try_wait(self, phase: bool = False, ticks: int = 10000000):

 nvgpu.MBarrierTryWaitParityOp(...)

33Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

Ch2.py: 2D SAXPY with TMA
Mbarrier OPs and Mbarrier class in NVDSL

nvgpu.mbarrier.create

● Allows creating multiple mbarriers

○ %mbarGroup = nvgpu.mbarrier.create <...,

num_barriers = 7>

nvgpu.mbarrier.init | arrive | try_wait

● Convenient access to mbarriers with SSA index. Ideal for

handling multiple barriers within a loop

○ nvgpu.mbarrier.init %mbarGroup[%mbar_id]

● Provides support for predication

○ nvgpu.mbarrier.expect_tx

%mbarGroup[%mbar_id] predicate = %tidx0

class Mbarriers:

 def __init__(self, number_of_barriers=1):

 self.mbar_ty = …

 self.number_of_barriers = number_of_barriers

 self.mbar_group_op = nvgpu.mbarrier_create(self.mbar_ty)

 def __getitem__(self, key):

 self.id_op = const(key)

 return self

 def init(self, count: int, predicate=None):

 count_op = const(count)

 nvgpu.mbarrier_init(self.mbar_group_op, count_op, self.id_op…)

 def arrive(self, txcount: int = 0, predicate=None):

 if txcount != 0:

 txcount_op = const(txcount)

 nvgpu.mbarrier_arrive_expect_tx(

 self.mbar_group_op, txcount_op, self.id_op, predicate=predicate

)

 def try_wait(self, phase: bool = False, ticks: int = 10000000):

 nvgpu.MBarrierTryWaitParityOp(...)

34Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

Ch2.py: 2D SAXPY with TMA
@NVDSL.mlir_func

def saxpy_tma(x, y, alpha):

 token_ty = ir.Type.parse("!gpu.async.token")

 t1 = gpu.wait(token_ty, [])

 x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [], [])

 y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [])

 t4 = gpu.memcpy(token_ty, [t3], x_dev, x)

 t5 = gpu.memcpy(token_ty, [t4], y_dev, y)

 t6 = gpu.wait(token_ty, [t5])

 x_tma = TMA((1,32), x.type)

 y_tma = TMA((1,32), y.type)

 x_tma.create_descriptor(x_dev)

 y_tma.create_descriptor(y_dev)

 @NVDSL.mlir_gpu_launch(grid=(M,1,1),block=(N,1,1),smem=256)

 def saxpy_tma_kernel():

 # Kernel Body (next slides)

 t7 = gpu.memcpy(token_ty, [t6], y, y_dev)

 gpu.wait(token_ty, [t7])

Start Building Host IR

35Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

Ch2.py: 2D SAXPY with TMA
Generated IR

@NVDSL.mlir_func

def saxpy_tma(x, y, alpha):

 token_ty = ir.Type.parse("!gpu.async.token")

 t1 = gpu.wait(token_ty, [])

 x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [], [])

 y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [])

 t4 = gpu.memcpy(token_ty, [t3], x_dev, x)

 t5 = gpu.memcpy(token_ty, [t4], y_dev, y)

 t6 = gpu.wait(token_ty, [t5])

 x_tma = TMA((1,32), x.type)

 y_tma = TMA((1,32), y.type)

 x_tma.create_descriptor(x_dev)

 y_tma.create_descriptor(y_dev)

 @NVDSL.mlir_gpu_launch(grid=(M,1,1),block=(N,1,1),smem=256)

 def saxpy_tma_kernel():

 # Kernel Body (next slides)

 t7 = gpu.memcpy(token_ty, [t6], y, y_dev)

 gpu.wait(token_ty, [t7])

36Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

Ch2.py: 2D SAXPY with TMA
Generated IR

@NVDSL.mlir_func

def saxpy_tma(x, y, alpha):

 token_ty = ir.Type.parse("!gpu.async.token")

 t1 = gpu.wait(token_ty, [])

 x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [], [])

 y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [])

 t4 = gpu.memcpy(token_ty, [t3], x_dev, x)

 t5 = gpu.memcpy(token_ty, [t4], y_dev, y)

 t6 = gpu.wait(token_ty, [t5])

 x_tma = TMA((1,32), x.type)

 y_tma = TMA((1,32), y.type)

 x_tma.create_descriptor(x_dev)

 y_tma.create_descriptor(y_dev)

 @NVDSL.mlir_gpu_launch(grid=(M,1,1),block=(N,1,1),smem=256)

 def saxpy_tma_kernel():

 # Kernel Body (next slides)

 t7 = gpu.memcpy(token_ty, [t6], y, y_dev)

 gpu.wait(token_ty, [t7])

%3 = nvgpu.tma.create.descriptor %x box[%c1, %c32]

 : memref<*xf32>

 -> <tensor = memref<1x32xf32, 3>,

 swizzle = none,

 l2promo = none,

 oob = zero,

 interleave = none>

%4 = nvgpu.tma.create.descriptor %y box[%c1, %c32]

 : memref<*xf32>

 -> <tensor = memref<1x32xf32, 3>,

 swizzle = none,

 l2promo = none,

 oob = zero,

 interleave = none>

37Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

%memref, %asyncToken = gpu.alloc async [%6] () : memref<256x32xf32>

%7 = gpu.memcpy async [%asyncToken_1] %memref, %arg0 : memref<256x32xf32>, memref<256x32xf32>

%cast = memref.cast %memref : memref<256x32xf32> to memref<*xf32>

%9 = builtin.unrealized_conversion_cast %cast : memref<*xf32> to !llvm.struct<(i64, ptr)>

%10 = llvm.mlir.constant(7 : i32) : i64

%11 = llvm.extractvalue %9[0] : !llvm.struct<(i64, ptr)>

%12 = llvm.extractvalue %9[1] : !llvm.struct<(i64, ptr)>

%13 = llvm.mlir.constant(5 : i32) : i64

%14 = llvm.alloca %13 x i64 : (i64) -> !llvm.ptr

%15 = llvm.mlir.constant(0 : i32) : i64

%16 = llvm.getelementptr %14[%15] : (!llvm.ptr, i64) -> !llvm.ptr, !llvm.ptr

llvm.store %5, %16 : i64, !llvm.ptr

%17 = llvm.mlir.constant(1 : i32) : i64

%18 = llvm.getelementptr %14[%17] : (!llvm.ptr, i64) -> !llvm.ptr, !llvm.ptr

llvm.store %4, %18 : i64, !llvm.ptr

%19 = llvm.mlir.constant(0 : i32) : i64

%20 = llvm.mlir.constant(0 : i32) : i64

%21 = llvm.mlir.constant(0 : i32) : i64

%22 = llvm.mlir.constant(0 : i32) : i64

%23 = llvm.call @mgpuTensorMapEncodeTiledMemref(%11, %12, %10, %19, %20, %21, %22, %14) : (i64,

!llvm.ptr, i64, i64, i64, i64, i64, !llvm.ptr) -> !llvm.ptr

Lowering nvgpu.tma.create.descriptor
Calls MLIR Runtime @mgpuTensorMapEncodeTiledMemref

%3 = nvgpu.tma.create.descriptor %x box[%c1, %c32]

 : memref<*xf32>

 -> <tensor = memref<1x32xf32, 3>,

 swizzle = none,

 l2promo = none,

 oob = zero,

 interleave = none>

--convert-nvgpu-to-nvvm Pass
38Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Inside @mgpuTensorMapEncodeTiledMemref
Calls CUDA driver cuTensorMapEncodeTiled

extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuTensorMapEncodeTiled(...) {

 CUDA_REPORT_IF_ERROR(cuTensorMapEncodeTiled(tensorMap, tensorDataType, tensorRank, globalAddress,

 globalDim, globalStrides, boxDim, elementStrides, interleave, swizzle, l2Promotion, oobFill));

 }

extern "C" MLIR_CUDA_WRAPPERS_EXPORT void *mgpuTensorMapEncodeTiledMemref(...

) {

 CUtensorMap tensorMap;

 ...

 mgpuTensorMapEncodeTiled(&tensorMap, tensorDataType, tensorRank32,globalAddress, globalDim,

globalStrides, boxDim, elementStrides, interleave, swizzle, l2Promotion, oobFill);

 // Copy created tensor map to device

 CUdeviceptr dTensorMap;

 CUDA_REPORT_IF_ERROR(cuMemAlloc(&dTensorMap, sizeof(CUtensorMap)));

 CUDA_REPORT_IF_ERROR(cuMemcpy(dTensorMap,

 reinterpret_cast<CUdeviceptr>(&tensorMap),

 sizeof(CUtensorMap)));

 return reinterpret_cast<void *>(dTensorMap);

}

CUDA driver call
generates TMA descriptor
(aka CUtensorMap *)

cuMemAlloc & cuMemcpy

39Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

Ch2.py: 2D SAXPY with TMA @NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1), smem=sz_x_y)

 def saxpy_tma_kernel():

 bidx = gpu.block_id(gpu.Dimension.x)

 tidx = gpu.thread_id(gpu.Dimension.x)

 isThread0 = tidx == 0

 # 1. Create and initialize asynchronous transactional barrier (mbarrier)

 mbar_group = Mbarriers(number_of_barriers=1)

 mbar_group[0].init(1, predicate=isThread0)

 # 2. Execute Tensor Memory Accelerator (TMA) Load

 x_smem = get_dynamic_shared_memory((1, N), T.f32())

 y_smem = get_dynamic_shared_memory((1, N), T.f32(), offset=M * N * 2)

 x_tma.load(x_smem, mbar_group[0], coords=[0, bidx], predicate=isThread0)

 y_tma.load(y_smem, mbar_group[0], coords=[0, bidx], predicate=isThread0)

 mbar_group[0].arrive(txcount=size_x + size_y, predicate=isThread0)

 # 3. Wait for completion of TMA load with mbarrier

 mbar_group[0].try_wait()

 x_val = memref.load(x_smem, [0, tidx])

 y_val = memref.load(y_smem, [0, tidx])

 # SAXPY: y[i] += a * x[i];

 y_val += x_val * alpha

 memref.store(y_val, y_dev, [bidx, tidx])

Start Building GPU IR

40Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

Ch2.py: 2D SAXPY with TMA
Generated IR

gpu.launch blocks(256,1,1) threads(32,1,1) … {

 %bdimx = gpu.block_id x

 %tidx = gpu.thread_id x

 %isThread0 = arith.cmpi eq, %thread_id_x, %c0 : index

 // 1. Create and initialize mbarrier

 %bar = nvgpu.mbarrier.create -> <memorySpace = #gpu.address_space<workgroup>>

 nvgpu.mbarrier.init %bar[%c0], %c1, predicate = %isThread0

 : <memorySpace = #gpu.address_space<workgroup>>

 @NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1), smem=sz_x_y)

 def saxpy_tma_kernel():

 bidx = gpu.block_id(gpu.Dimension.x)

 tidx = gpu.thread_id(gpu.Dimension.x)

 isThread0 = tidx == 0

 # 1. Create and initialize asynchronous transactional barrier (mbarrier)

 mbar_group = Mbarriers(number_of_barriers=1)

 mbar_group[0].init(1, predicate=isThread0)

 # 2. Execute Tensor Memory Accelerator (TMA) Load

 x_smem = get_dynamic_shared_memory((1, N), T.f32())

 y_smem = get_dynamic_shared_memory((1, N), T.f32(), offset=M * N * 2)

 x_tma.load(x_smem, mbar_group[0], coords=[0, bidx], predicate=isThread0)

 y_tma.load(y_smem, mbar_group[0], coords=[0, bidx], predicate=isThread0)

 mbar_group[0].arrive(txcount=size_x + size_y, predicate=isThread0)

 # 3. Wait for completion of TMA load with mbarrier

 mbar_group[0].try_wait()

 x_val = memref.load(x_smem, [0, tidx])

 y_val = memref.load(y_smem, [0, tidx])

 # SAXPY: y[i] += a * x[i];

 y_val += x_val * alpha

 memref.store(y_val, y_dev, [bidx, tidx]) 41Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

// 2. Execute Tensor Memory Accelerator (TMA) Load

%8 = gpu.dynamic_shared_memory : memref<?xi8, #gpu.address_space<workgroup>>

%x_smem = memref.view %8[%c0][] : memref<?xi8, #gpu.address_space<workgroup>> to memref<256x32xf32, #gpu.address_space<workgroup>>

%y_smem = memref.view %8[%c128][] : memref<?xi8, #gpu.address_space<workgroup>> to memref<256x32xf32, #gpu.address_space<workgroup>>

nvgpu.tma.async.load %desc_x[%c0, %bidx], %bar[%c0] to %x_smem,

 predicate = %isThread0
: <tensor = memref<256x32xf32, 3>, swizzle = none, l2promo = none, oob = zero, interleave = none>, <memorySpace = #gpu.address_space<workgroup>> -> memref<256x32xf32, #gpu.address_space<workgroup>>

nvgpu.tma.async.load %desc_y[%c0, %bidx], %bar[%c0] to %y_smem,

 predicate = %isThread0
: <tensor = memref<256x32xf32, 3>, swizzle = none, l2promo = none, oob = zero, interleave = none>, <memorySpace = #gpu.address_space<workgroup>> -> memref<256x32xf32, #gpu.address_space<workgroup>>

nvgpu.mbarrier.arrive.expect_tx %bar[%c0], %c256,

 predicate = %isThread0
: <memorySpace = #gpu.address_space<workgroup>>

Building IR with Py bindings

Ch2.py: 2D SAXPY with TMA
Generated IR

Bytes expected to be loaded by TMA
 txcount = sizeof(x + y) = 256byte

42Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

 @NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1), smem=sz_x_y)

 def saxpy_tma_kernel():

 bidx = gpu.block_id(gpu.Dimension.x)

 tidx = gpu.thread_id(gpu.Dimension.x)

 isThread0 = tidx == 0

 # 1. Create and initialize asynchronous transactional barrier (mbarrier)

 mbar_group = Mbarriers(number_of_barriers=1)

 mbar_group[0].init(1, predicate=isThread0)

 # 2. Execute Tensor Memory Accelerator (TMA) Load

 x_smem = get_dynamic_shared_memory((1, N), T.f32())

 y_smem = get_dynamic_shared_memory((1, N), T.f32(), offset=M * N * 2)

 x_tma.load(x_smem, mbar_group[0], coords=[0, bidx], predicate=isThread0)

 y_tma.load(y_smem, mbar_group[0], coords=[0, bidx], predicate=isThread0)

 mbar_group[0].arrive(txcount=size_x + size_y, predicate=isThread0)

 # 3. Wait for completion of TMA load with mbarrier

 mbar_group[0].try_wait()

 x_val = memref.load(x_smem, [0, tidx])

 y_val = memref.load(y_smem, [0, tidx])

 # SAXPY: y[i] += a * x[i];

 y_val += x_val * alpha

 memref.store(y_val, y_dev, [bidx, tidx])

nvgpu.mbarrier.try_wait.parity %bar[%c0], %false,

%c10000000 : <memorySpace = #gpu.address_space<workgroup>>

Building IR with Py bindings

Ch2.py: 2D SAXPY with TMA

43Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

 @NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1), smem=sz_x_y)

 def saxpy_tma_kernel():

 bidx = gpu.block_id(gpu.Dimension.x)

 tidx = gpu.thread_id(gpu.Dimension.x)

 isThread0 = tidx == 0

 # 1. Create and initialize asynchronous transactional barrier (mbarrier)

 mbar_group = Mbarriers(number_of_barriers=1)

 mbar_group[0].init(1, predicate=isThread0)

 # 2. Execute Tensor Memory Accelerator (TMA) Load

 x_smem = get_dynamic_shared_memory((1, N), T.f32())

 y_smem = get_dynamic_shared_memory((1, N), T.f32(), offset=M * N * 2)

 x_tma.load(x_smem, mbar_group[0], coords=[0, bidx], predicate=isThread0)

 y_tma.load(y_smem, mbar_group[0], coords=[0, bidx], predicate=isThread0)

 mbar_group[0].arrive(txcount=size_x + size_y, predicate=isThread0)

 # 3. All threads in CTA wait for completion of TMA load with mbarrier

 mbar_group[0].try_wait()

 x_val = memref.load(x_smem, [0, tidx])

 y_val = memref.load(y_smem, [0, tidx])

 # SAXPY: y[i] += a * x[i];

 y_val += x_val * alpha

 memref.store(y_val, y_dev, [bidx, tidx])

Building IR with Py bindings

Ch2.py: 2D SAXPY with TMA @NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1), smem=sz_x_y)

 def saxpy_tma_kernel():

 bidx = gpu.block_id(gpu.Dimension.x)

 tidx = gpu.thread_id(gpu.Dimension.x)

 isThread0 = tidx == 0

 # 1. Create and initialize asynchronous transactional barrier (mbarrier)

 mbar_group = Mbarriers(number_of_barriers=1)

 mbar_group[0].init(1, predicate=isThread0)

 # 2. Execute Tensor Memory Accelerator (TMA) Load

 x_smem = get_dynamic_shared_memory((1, N), T.f32())

 y_smem = get_dynamic_shared_memory((1, N), T.f32(), offset=M * N * 2)

 x_tma.load(x_smem, mbar_group[0], coords=[0, bidx], predicate=isThread0)

 y_tma.load(y_smem, mbar_group[0], coords=[0, bidx], predicate=isThread0)

 mbar_group[0].arrive(txcount=size_x + size_y, predicate=isThread0)

 # 3. Wait for completion of TMA load with mbarrier

 mbar_group[0].try_wait()

 x_val = memref.load(x_smem, [0, tidx])

 y_val = memref.load(y_smem, [0, tidx])

 # SAXPY: y[i] += a * x[i];

 y_val += x_val * alpha

 memref.store(y_val, y_dev, [bidx, tidx])

Computation is similar to Ch1.py

44Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Ch3.py: GEMM 128x128x64 with Tensor Core

def gemm_128x128x64(a, b, d):

 a_smem, b_smem = tma_load()

 for i in range(128):

 for j in range(128):

 for k in range(64):

 d[i, j] += a_smem[i,k] * b_smem[k,j]

45Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Ch3.py: GEMM 128x128x64 with Tensor Core

def gemm_128x128x64(a, b, d):

 a_smem, b_smem = tma_load()

 for i in range(128):

 for j in range(128):

 for k in range(64):

 d[i, j] += a_smem[i,k] * b_smem[k,j]

46Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Launch 1 Thread Block (CTA)

Offload 128x128x64 GEMM to Tensor Core

Building IR with Py bindings

class WGMMAType(Enum):

 Accumulator = 1

 Descriptor = 2

class WGMMAMatrix:

 def __init__(self, matrix_type: WGMMAType, shape: list = None,):...

 def update_smem(self, smem):

 self.smem = smem

 def update_accumulator(self, acc_op):

 self.acc_op = acc_op

 def __matmul__(self, rhs):

 lhs = nvgpu.warpgroup_generate_descriptor(...)

 rhs = nvgpu.warpgroup_generate_descriptor(...)

 return [lhs, rhs]

 def __iadd__(self, matmulResult):

 ...

 return nvgpu.warpgroup_mma(self.acc_op.type, lhs, rhs, self.acc_op, …)

 def store_accumulator(self):

 nvgpu.warpgroup_mma_store(...)

Ch3.py: GEMM 128x128x64
Tensor Core OPs and class WGMMAMatrix in NVDSL

nvgpu.warpgroup.mma.init.accumulator

● Create and initialize registers (no need for a new op in nvvm)

nvgpu.warpgroup.generate.descriptor

● Generates 64-bit descriptor that keeps: Start Address, leading

dimension, stride, swizzle (no need for a new op in nvvm)

nvgpu.warpgroup.mma

● Use Tensor Core using following new ops in nvvm
● nvvm.wgmma.fence.aligned

● nvvm.wgmma.mma_async

● nvvm.wgmma.commit.group.sync.aligned

● nvvm.wgmma.wait.group.sync.aligned

nvgpu.warpgroup.mma.store

● Store fragmented registers to shared or global memory using
following nvvm operations

○ nvvm.stmatrix

○ vector.store

47Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

Ch3.py: GEMM 128x128x64 @NVDSL.mlir_func

def gemm_128_128_64(a, b, d):

 t1 = gpu.wait(token_ty, [])

 a_dev, t2 = gpu.alloc(a.type, token_ty, [t1], [], [])

 b_dev, t3 = gpu.alloc(b.type, token_ty, [t2], [], [])

 d_dev, t4 = gpu.alloc(d.type, token_ty, [t3], [], [])

 t5 = gpu.memcpy(token_ty, [t4], a_dev, a)

 t6 = gpu.memcpy(token_ty, [t5], b_dev, b)

 t7 = gpu.wait(token_ty, [t6])

 sw = nvgpu.TensorMapSwizzleKind.SWIZZLE_128B

 a_tma = TMA([128, 64], a.type, swizzle=sw)

 b_tma = TMA([64, 64], b.type, swizzle=sw)

 a_tma.create_descriptor(a_dev)

 b_tma.create_descriptor(b_dev)

 sz = get_type_size(a.type) + get_type_size(b.type)

 @NVDSL.mlir_gpu_launch(grid=(1, 1, 1), block=(128, 1, 1), smem=sz)

 def gemm_tma_kernel():

 # Kernel Body

 gemm_tma_kernel()

 t8 = gpu.memcpy(token_ty, [t7], d, d_dev)

 gpu.wait(None, [t8])

Start Building Host IR

48Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

Ch3.py: GEMM 128x128x64 @NVDSL.mlir_func

def gemm_128_128_64(a, b, d):

 t1 = gpu.wait(token_ty, [])

 a_dev, t2 = gpu.alloc(a.type, token_ty, [t1], [], [])

 b_dev, t3 = gpu.alloc(b.type, token_ty, [t2], [], [])

 d_dev, t4 = gpu.alloc(d.type, token_ty, [t3], [], [])

 t5 = gpu.memcpy(token_ty, [t4], a_dev, a)

 t6 = gpu.memcpy(token_ty, [t5], b_dev, b)

 t7 = gpu.wait(token_ty, [t6])

 sw = nvgpu.TensorMapSwizzleKind.SWIZZLE_128B

 a_tma = TMA([128, 64], a.type, swizzle=sw)

 b_tma = TMA([64, 64], b.type, swizzle=sw)

 a_tma.create_descriptor(a_dev)

 b_tma.create_descriptor(b_dev)

 sz = get_type_size(a.type) + get_type_size(b.type)

 @NVDSL.mlir_gpu_launch(grid=(1, 1, 1), block=(128, 1, 1), smem=sz)

 def gemm_tma_kernel():

 # Kernel Body

 gemm_tma_kernel()

 t8 = gpu.memcpy(token_ty, [t7], d, d_dev)

 gpu.wait(None, [t8]) 49Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

Ch3.py: GEMM 128x128x64
 @NVDSL.mlir_gpu_launch(grid=(1,1,1),

 block=(128,1,1),smem=sz)

 def gemm_tma_kernel():

 tidx = gpu.thread_id(gpu.Dimension.x)

 isThread0 = tidx == 0

 mbar_group = Mbarriers(number_of_barriers=1)

 mbar_group[0].init(1, predicate=isThread0)

 # 1. TMA Load for two input matrices

 tma_load(mbar_group, a_tma, b_tma, isThread0)

 # 2. All threads wait TMA load completion

 mbar_group[0].try_wait()

 a_smem = get_dynamic_shared_memory((128, 64), T.f16())

 b_smem = get_dynamic_shared_memory((64, 128), T.f16(), offset=off_b)

 # 3. Performs Tensor Core GEMM 128x128x64 by warpgroup

 A = WGMMAMatrix(WGMMAType.Descriptor, [128, 64], desc=a_tma, a_smem)

 B = WGMMAMatrix(WGMMAType.Descriptor, [64, 128], desc=b_tma, b_smem)

 C = WGMMAMatrix(WGMMAType.Accumulator, shape=[128, 128], ty=T.f32())

 # Matrix Multiply

 C += A @ B

 # 4. Stores fragmented registers to global memory by warpgroup

 C.store_accumulator(d_dev)

Start Building GPU IR

50Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

gpu.launch blocks(1,1,1) threads(128,1,1) {

 %tidx = gpu.thread_id x

 %isThread0 = arith.cmpi eq, %thread_id_x, %c0 : index

 %bar = nvgpu.mbarrier.create -> <memorySpace = #gpu.address_space<workgroup>>

 nvgpu.mbarrier.init %bar[%c0], %c1, predicate = %isThread0

 : <memorySpace = #gpu.address_space<workgroup>>

Building IR with Py bindings

Ch3.py: GEMM 128x128x64

51Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

 @NVDSL.mlir_gpu_launch(grid=(1,1,1),

 block=(128,1,1),smem=sz)

 def gemm_tma_kernel():

 tidx = gpu.thread_id(gpu.Dimension.x)

 isThread0 = tidx == 0

 mbar_group = Mbarriers(number_of_barriers=1)

 mbar_group[0].init(1, predicate=isThread0)

 # 1. TMA Load for two input matrices

 tma_load(mbar_group, a_tma, b_tma, 0, 0, isThread0)

 # 2. All threads wait TMA load completion

 mbar_group[0].try_wait()

 a_smem = get_dynamic_shared_memory((128, 64), T.f16())

 b_smem = get_dynamic_shared_memory((64, 128), T.f16(), offset=off_b)

 # 3. Performs Tensor Core GEMM 128x128x64 by warpgroup

 A = WGMMAMatrix(WGMMAType.Descriptor, [128, 64], desc=a_tma, a_smem)

 B = WGMMAMatrix(WGMMAType.Descriptor, [64, 128], desc=b_tma, b_smem)

 C = WGMMAMatrix(WGMMAType.Accumulator, shape=[128, 128], ty=T.f32())

 # Matrix Multiply

 C += A @ B

 # 4. Stores fragmented registers to global memory by warpgroup

 C.store_accumulator(d_dev)

Building IR with Py bindings

Ch3.py: GEMM 128x128x64

def tma_load(mbar_group:Mbarriers, a_tma:TMA, b_tma:TMA, slot, stage, pred):

 size_tma_a = get_type_size(a_tma.tma_memref)

 size_tma_b = get_type_size(b_tma.tma_memref)

 ta_count = size_tma_a + (size_tma_b * 2)

 off_b = size_tma_a

 off_b2 = off_b + size_tma_b

 a_elem_ty = a_tma.tma_memref.element_type

 b_elem_ty = b_tma.tma_memref.element_type

 a = get_dynamic_shared_memory(a_tma.tma_memref.shape, a_elem_ty)

 b1 = get_dynamic_shared_memory(b_tma.tma_memref.shape, b_elem_ty, off_b)

 b2 = get_dynamic_shared_memory(b_tma.tma_memref.shape, b_elem_ty, off_b2)

 mbar_group[slot].arrive(ta_count, predicate=pred)

 dimN, dimM = partition_shape()

 a_tma.load(a, mbar_group[slot], coords=[dimK , dimM], predicate=pred)

 b_tma.load(b1, mbar_group[slot], coords=[dimN , dimK], predicate=pred)

 b_tma.load(b2, mbar_group[slot], coords=[dimN + 64, dimK], predicate=pred)

52Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

 @NVDSL.mlir_gpu_launch(grid=(1,1,1),

 block=(128,1,1),smem=sz)

 def gemm_tma_kernel():

 tidx = gpu.thread_id(gpu.Dimension.x)

 isThread0 = tidx == 0

 mbar_group = Mbarriers(number_of_barriers=1)

 mbar_group[0].init(1, predicate=isThread0)

 # 1. TMA Load for two input matrices

 tma_load(mbar_group, a_tma, b_tma, 0, 0, isThread0)

 # 2. All threads wait TMA load completion

 mbar_group[0].try_wait()

 a_smem = get_dynamic_shared_memory((128, 64), T.f16())

 b_smem = get_dynamic_shared_memory((64, 128), T.f16(), offset=off_b)

 # 3. Performs Tensor Core GEMM 128x128x64 by warpgroup

 A = WGMMAMatrix(WGMMAType.Descriptor, [128, 64], desc=a_tma, a_smem)

 B = WGMMAMatrix(WGMMAType.Descriptor, [64, 128], desc=b_tma, b_smem)

 C = WGMMAMatrix(WGMMAType.Accumulator, shape=[128, 128], ty=T.f32())

 # Matrix Multiply

 C += A @ B

 # 4. Stores fragmented registers to global memory by warpgroup

 C.store_accumulator(d_dev)

Ch3.py: GEMM 128x128x64

def tma_load(mbar_group:Mbarriers, a_tma:TMA, b_tma:TMA, slot, stage, pred):

 size_tma_a = get_type_size(a_tma.tma_memref)

 size_tma_b = get_type_size(b_tma.tma_memref)

 ta_count = size_tma_a + (size_tma_b * 2)

 off_b = size_tma_a

 off_b2 = off_b + size_tma_b

 a_elem_ty = a_tma.tma_memref.element_type

 b_elem_ty = b_tma.tma_memref.element_type

 a = get_dynamic_shared_memory(a_tma.tma_memref.shape, a_elem_ty)

 b1 = get_dynamic_shared_memory(b_tma.tma_memref.shape, b_elem_ty, off_b)

 b2 = get_dynamic_shared_memory(b_tma.tma_memref.shape, b_elem_ty, off_b2)

 mbar_group[slot].arrive(ta_count, predicate=pred)

 dimN, dimM = partition_shape()

 a_tma.load(a, mbar_group[slot], coords=[dimK , dimM], predicate=pred)

 b_tma.load(b1, mbar_group[slot], coords=[dimN , dimK], predicate=pred)

 b_tma.load(b2, mbar_group[slot], coords=[dimN + 64, dimK], predicate=pred)

53Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

Ch3.py: GEMM 128x128x64

%A = nvgpu.warpgroup.generate.descriptor %view, %3

: memref<128x64xf16, ...>, …

%B = nvgpu.warpgroup.generate.descriptor %view_5, %4

: memref<64x128xf16, ...>, …

%C = nvgpu.warpgroup.mma.init.accumulator

 -> <fragmented = vector<128x128xf32>>

%D = nvgpu.warpgroup.mma %10, %11, %9 {transposeB}

: <tensor = memref<128x64xf16, ...>>,

 <tensor = memref<64x128xf16, ...>>,

 <fragmented = vector<128x128xf32>>

-> <fragmented = vector<128x128xf32>>

54Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

 @NVDSL.mlir_gpu_launch(grid=(1,1,1),

 block=(128,1,1),smem=sz)

 def gemm_tma_kernel():

 tidx = gpu.thread_id(gpu.Dimension.x)

 isThread0 = tidx == 0

 mbar_group = Mbarriers(number_of_barriers=1)

 mbar_group[0].init(1, predicate=isThread0)

 # 1. TMA Load for two input matrices

 tma_load(mbar_group, a_tma, b_tma, isThread0)

 # 2. All threads wait TMA load completion

 mbar_group[0].try_wait()

 a_smem = get_dynamic_shared_memory((128, 64), T.f16())

 b_smem = get_dynamic_shared_memory((64, 128), T.f16(), offset=off_b)

 # 3. Initialize 2 Input Matrices and Accumulator

 A = WGMMAMatrix(WGMMAType.Descriptor, [128 ,64], desc=a_tma, a_smem)

 B = WGMMAMatrix(WGMMAType.Descriptor, [64, 128], desc=b_tma, b_smem)

 C = WGMMAMatrix(WGMMAType.Accumulator, shape=[128, 128], ty=T.f32())

 # Matrix Multiply

 C += A @ B

 # 4. Stores fragmented registers to global memory by warpgroup

 C.store_accumulator(d_dev)

Go Deeper nvgpu.warpgroup.mma → nvvm/PTX
128x128x64 → 8 times 64x128x16 (supported tensor core shape)

// Initialize input matrix: 2x64xf32 Registers

%r = 0 : !llvm.struct<(...)>

// 8 x wgmma.mma_async.m64n128k16 PTX instruction

nvvm.wgmma.fence.aligned

%w1 = nvvm.wgmma.mma_async %dA, %dB, %r[0], <m=64, n=128, k=16>

%w2 = nvvm.wgmma.mma_async %dA+2, %dB+128, %w1, <m=64, n=128, k=16>

%w3 = nvvm.wgmma.mma_async %dA+4, %dB+256, %w2, <m=64, n=128, k=16>

%w4 = nvvm.wgmma.mma_async %dA+6, %dB+384, %w3, <m=64, n=128, k=16>

%w5 = nvvm.wgmma.mma_async %dA+512, %dB, , %r[1], <m=64, n=128, k=16>

%w6 = nvvm.wgmma.mma_async %dA+514, %dB+128, %w5, <m=64, n=128, k=16>

%w7 = nvvm.wgmma.mma_async %dA+516, %dB+256, %w6, <m=64, n=128, k=16>

%w8 = nvvm.wgmma.mma_async %dA+518, %dB+384, %w7, <m=64, n=128, k=16>

nvvm.wgmma.commit.group.sync.aligned

nvvm.wgmma.wait.group.sync.aligned 1

55Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

Ch3.py: GEMM 128x128x64

nvgpu.warpgroup.mma.store %C, %memref :

 <fragmented = vector<64x64xf32>>

 to memref<64x64xf32>

56Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

 @NVDSL.mlir_gpu_launch(grid=(1,1,1),

 block=(128,1,1),smem=sz)

 def gemm_tma_kernel():

 tidx = gpu.thread_id(gpu.Dimension.x)

 isThread0 = tidx == 0

 mbar_group = Mbarriers(number_of_barriers=1)

 mbar_group[0].init(1, predicate=isThread0)

 # 1. TMA Load for two input matrices

 tma_load(mbar_group, a_tma, b_tma, isThread0)

 # 2. All threads wait TMA load completion

 mbar_group[0].try_wait()

 a_smem = get_dynamic_shared_memory((M, K), T.f16())

 b_smem = get_dynamic_shared_memory((K, N), T.f16(), offset=off_b)

 # 3. Initialize 2 Input Matrices and Accumulator

 A = WGMMAMatrix(WGMMAType.Descriptor, [M,K], desc=a_tma, a_smem)

 B = WGMMAMatrix(WGMMAType.Descriptor, [K,N], desc=b_tma, b_smem)

 C = WGMMAMatrix(WGMMAType.Accumulator, shape=[M,N], ty=T.f32())

 # Matrix Multiply

 C += A @ B

 # 4. Stores fragmented registers to global memory by warpgroup

 C.store_accumulator(d_dev)

What about the performance?

Ch3.py: GEMM 128x128x64

57Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Ch4.py: Multistage GEMM
Shape = MxNxK, Tile = 128x128x64

Overlap Tensor Core and Data Load (TMA)

58Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

Ch4.py: Multistage GEMM
Shape = MxNxK, Tile = 128x128x64

@NVDSL.mlir_gpu_launch(grid=grid,block=block,smem=...)

def gemm_multistage_kernel():

 mbar_group = init(x_tma, y_tma)

 prologue(mbar_group, x_tma, y_tma)

 D = mainloop(mbar_group, x_tma, y_tma)

 epilogue(D, z_dev)

59Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

Ch4.py: Multistage GEMM
Prologue

def prologue(mbar_group: Mbarriers,

 a_tma: TMA, b_tma: TMA):

 for iv in scf.for_(0, NUM_STAGES-1, 1):

 tma_load(mbar_group, a_tma, b_tma, iv, iv)

 scf.yield_([])

60Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

Ch4.py: Multistage GEMM
Mainloop

def mainloop(x,y,z):

for ti in range(M//128): # -> blockIdx.x

 for tj in range(N//128): # -> blockIdx.y

 D = 0

 for tk in range(K//64):

 for i in range(128):

 for j in range(128):

 for k in range(64):

 D += # mma

 z(ti:ti:128, tj:tj:128) = D

61Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

Ch4.py: Multistage GEMM
Mainloop

def mainloop(x,y,z):

for ti in range(M//128): # -> blockIdx.x

 for tj in range(N//128): # -> blockIdx.y

 D = 0

 for tk in range(K//64):

 for i in range(128):

 for j in range(128):

 for k in range(64):

 D += # mma

 z(ti:ti:128, tj:tj:128) = D

Tensor Core
128x128x64

Need a Loop

62Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

Ch4.py: Multistage GEMM
Mainloop def mainloop(mbar_group: Mbarriers, x_tma: TMA, y_tma: TMA):

 ns = NUM_STAGES if NUM_STAGES == 1 else NUM_STAGES - 1

 tidx = gpu.thread_id(gpu.Dimension.x)

 begin_y = NUM_STAGES * get_type_size(x_tma.tma_memref)

 size_x = TILE_M * TILE_K * get_type_size(T.f16())

 pp = const(False, ty=T.bool())

 A = WGMMAMatrix(WGMMAType.Descriptor, [TILE_M, TILE_K], desc=a_tma)

 B = WGMMAMatrix(WGMMAType.Descriptor, [TILE_K, TILE_N], desc=b_tma)

 D = WGMMAMatrix(WGMMAType.Accumulator, [TILE_M, TILE_N], ty=T.f32())

 # Main Loop

 for_op = scf.ForOp(const(0), const(K // TILE_K), const(1),

 [D.acc_op, pp])

 with ir.InsertionPoint(for_op.body):

 # Main Loop BODY

 scf.yield_([D.acc_op, newPP])

 nvvm.WgmmaWaitGroupSyncOp(0)

 return D

def mainloop(x,y,z):

for ti in range(M//128): # -> blockIdx.x

 for tj in range(N//128): # -> blockIdx.y

 D = 0

 for tk in range(K//64):

 for i in range(128):

 for j in range(128):

 for k in range(64):

 D += # mma

 z(ti:ti:128, tj:tj:128) = D

63Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Building IR with Py bindings

Ch4.py: Multistage GEMM
Mainloop

 with ir.InsertionPoint(for_op.body):

 phase = for_op.inner_iter_args[1]

 iv = for_op.induction_variable

 stage = iv % NUM_STAGES

 # Wait for the current stage

 mbar_group[stage].try_wait(phase=phase)

 offX = stage * size_a

 offY = offset_a + begin_b

 a_smem = get_dynamic_shared_memory([TILE_M, TILE_K], T.f16(), offX)

 b_smem = get_dynamic_shared_memory([TILE_K, TILE_N], T.f16(), offY)

 # Iterate input matrices, update accumulator

 A.update_smem(a_smem)

 B.update_smem(b_smem)

 D.update_accumulator(for_op.inner_iter_args[0])

 # Matrix Multiply

 D += A @ B

 # Load next stage

 pred = ((iv + ns) < const(K // TILE_K)) & (tidx == 0)

 nextSlot = (iv + ns) % NUM_STAGES

 tma_load(mbar_group, a_tma, b_tma, nextSlot, (iv + ns), pred)

 # Switch phase parity for the mbarrier

 newPhase = arith.select(stage == (NUM_STAGES - 1),

 (phase ^ const(True, ty=T.bool())), phase,)

 scf.yield_([D.acc_op, newPhase]) 64Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Start Building Mainloop IR

%13 = arith.remui %arg15, %c3 : index

nvgpu.mbarrier.try_wait.parity %6[%13], %arg17, %ticks

Building IR with Py bindings

Ch4.py: Multistage GEMM
Mainloop

65Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

 with ir.InsertionPoint(for_op.body):

 phase = for_op.inner_iter_args[1]

 iv = for_op.induction_variable

 stage = iv % NUM_STAGES

 # Wait for the current stage

 mbar_group[stage].try_wait(phase=phase)

 offX = stage * size_a

 offY = offset_a + begin_b

 a_smem = get_dynamic_shared_memory([TILE_M, TILE_K], T.f16(), offX)

 b_smem = get_dynamic_shared_memory([TILE_K, TILE_N], T.f16(), offY)

 # Iterate input matrices, update accumulator

 A.update_smem(a_smem)

 B.update_smem(b_smem)

 D.update_accumulator(for_op.inner_iter_args[0])

 # Matrix Multiply

 D += A @ B

 # Load next stage

 pred = ((iv + ns) < const(K // TILE_K)) & (tidx == 0)

 nextSlot = (iv + ns) % NUM_STAGES

 tma_load(mbar_group, a_tma, b_tma, nextSlot, (iv + ns), pred)

 # Switch phase parity for the mbarrier

 newPhase = arith.select(stage == (NUM_STAGES - 1),

 (phase ^ const(True, ty=T.bool())), phase,)

 scf.yield_([D.acc_op, newPhase])

Building IR with Py bindings

%A = nvgpu.warpgroup.generate.descriptor %x, %3

 : memref<128x64xf16,>

%B = nvgpu.warpgroup.generate.descriptor %y, %4

 : memref<64x128xf16,>

%D = nvgpu.warpgroup.mma %A, %B, %C {transposeB}

 : <tensor = memref<128x64xf16 ,...>>,

 <tensor = memref<64x128xf16 ,...>>,

 <fragmented = vector<128x128xf32>>

 -> <fragmented = vector<128x128xf32>>

Ch4.py: Multistage GEMM
Mainloop

66Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

 with ir.InsertionPoint(for_op.body):

 phase = for_op.inner_iter_args[1]

 iv = for_op.induction_variable

 stage = iv % NUM_STAGES

 # Wait for the current stage

 mbar_group[stage].try_wait(phase=phase)

 offX = stage * size_a

 offY = offset_a + begin_b

 a_smem = get_dynamic_shared_memory([TILE_M, TILE_K], T.f16(), offX)

 b_smem = get_dynamic_shared_memory([TILE_K, TILE_N], T.f16(), offY)

 # Iterate input matrices, update accumulator

 A.update_smem(a_smem)

 B.update_smem(b_smem)

 D.update_accumulator(for_op.inner_iter_args[0])

 # Matrix Multiply

 D += A @ B

 # Load next stage

 pred = ((iv + ns) < const(K // TILE_K)) & (tidx == 0)

 nextSlot = (iv + ns) % NUM_STAGES

 tma_load(mbar_group, a_tma, b_tma, nextSlot, (iv + ns), pred)

 # Switch phase parity for the mbarrier

 newPhase = arith.select(stage == (NUM_STAGES - 1),

 (phase ^ const(True, ty=T.bool())), phase,)

 scf.yield_([D.acc_op, newPhase])

Building IR with Py bindings

Ch4.py: Multistage GEMM
Mainloop

67Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

 with ir.InsertionPoint(for_op.body):

 phase = for_op.inner_iter_args[1]

 iv = for_op.induction_variable

 stage = iv % NUM_STAGES

 # Wait for the current stage

 mbar_group[stage].try_wait(phase=phase)

 offX = stage * size_a

 offY = offset_a + begin_b

 a_smem = get_dynamic_shared_memory([TILE_M, TILE_K], T.f16(), offX)

 b_smem = get_dynamic_shared_memory([TILE_K, TILE_N], T.f16(), offY)

 # Iterate input matrices, update accumulator

 A.update_smem(a_smem)

 B.update_smem(b_smem)

 D.update_accumulator(for_op.inner_iter_args[0])

 # Matrix Multiply

 D += A @ B

 # Load next stage

 pred = ((iv + ns) < const(K // TILE_K)) & (tidx == 0)

 nextSlot = (iv + ns) % NUM_STAGES

 tma_load(mbar_group, a_tma, b_tma, nextSlot, (iv + ns), pred)

 # Switch phase parity for the mbarrier

 newPhase = arith.select(stage == (NUM_STAGES - 1),

 (phase ^ const(True, ty=T.bool())), phase,)

 scf.yield_([D.acc_op, newPhase])

Building IR with Py bindings

Ch4.py: Multistage GEMM
Epilogue

68Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

def epilogue(D: WGMMAMatrix, d_dev):

 tidx = gpu.thread_id(gpu.Dimension.x)

 dimX, dimY = partition_shape()

 d_smem = get_dynamic_shared_memory([TILE_M, TILE_N], T.f32())

 d_gmem = memref.subview(d_dev,[dimX, dimY],[TILE_M,TILE_N],[1, 1])

 # Store (registers -> shared memory)

 D.store_accumulator(d_smem)

 gpu.barrier()

 # Store (shared memory --> global memory)

 for i in scf.for_(0, TILE_M, 1):

 val = memref.load(d_smem, [i, tidx])

 memref.store(val, d_gmem, [i, tidx])

 scf.yield_([])

Steps:
1. Stores registers -> shared memory

2. Store shared memory tile -> global memory

Performance of Ch4.py

Single Stage vs Multi Stage

P 69

Benchmark
Effect of Multistage vs Single Stage

Shape: (K varies)
● 7296 x 256 x K

Operation:
● F32 += F16 * F16

Tile Size:
● 128 x 128 x 64

70Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Ch4.py vs NVIDIA cuBLAS

P 71

cuBLAS vs MLIR

Operation:
● F32 += F16 * F16

Tile Size:
● 128 x 128 x 64

Ch4.py
● Multistage Kernel

72
Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Ch5.py: Warp Specialized GEMM
1 Producer + 1 Consumer Warpgroups

73

Thread Block has 2 Warpgroups (256 threads):
1. Producer Warpgroup → Performs TMA
2. Consumer Warpgroup → Performs Tensor Core

Building IR with Py bindings

Ch5.py: Warp Specialized GEMM
1 Producer + 1 Consumer Warpgroups

 def gemm_warp_specialized_kernel():

 wg_producer = Warpgroup(primaryThread = 128, regSize = 40)

 wg_consumer = Warpgroup(primaryThread = 0, regSize = 232)

 mbar_group_mma, mbar_group_tma = bootstrap(a_tma, b_tma)

 # Producer performs TMA

 with wg_producer:

 producer_loop(mbar_group_tma, mbar_group_mma,

 a_tma,b_tma, wg_producer)

 # Consumer performs MMA/Tensor Core

 with wg_consumer:

 D = consumer_loop(mbar_group_tma, mbar_group_mma,

 a_tma,b_tma, wg_consumer)

 epilogue(D, d_dev)

74

Ch4.py vs Ch5.py

Operation:
● F32 += F16 * F16

Tile Size:
● 128 x 128 x 64

Ch4.py
● Multistage Kernel

Ch5.py
● Warp Specialized

75
Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

What is next?

P 76

Ch6.py: Warp Specialized Persistent Ping-Pong GEMM (WIP)
1 Producer and 2 Consumers Warpgroups

77Zero to Hero: Programming Nvidia Tensor Core with MLIR NVGPU Dialect

Thread Block has 3 Warpgroups (384 threads):
Consumers Warpgroups MMA ←→ Epilogue

Use MLIR’s NVGPU Dialect with Python

Targeting NVIDIA Hopper in MLIR 78

NVGPU and NVVM Dialects
🔥 Hopper GPU Support

Unlocking Hopper's Power: MLIR's Python Binding
🔀 Seamlessly Express Multistage and Warp Specialization!

Peak performance
🚀 Achieve cuBLAS-Level performance

.

P 79

MLIR Upstream Dialect Layers
What happens after NVVM Dialect?

Targeting NVIDIA Hopper in MLIR

Today we will program
● Python → NVGPU → NVVM

LLVM doesn’t have
Hopper intrinsics

BasicPtxBuilder generates
inline assembly

😔

80

https://emojipedia.org/pensive-face

New Interface:
BasicPtxBuilder

Targeting NVIDIA Hopper in MLIR

 def NVVM_MBarrierArriveExpectTxOp : NVVM_Op<"mbarrier.arrive.expect_tx",

 [DeclareOpInterfaceMethods<BasicPtxBuilderOpInterface>]>

 Arguments<(ins LLVM_i64ptr_any:$addr, I32:$txcount, PtxPredicate:$predicate)> {

 let assemblyFormat =

 "$addr `,` $txcount (`,` `predicate` `=` $predicate^)? attr-dict `:` type(operands)" ;

 let extraClassDefinition = [{

 std::string $cppClass::getPtx() {

 return std::string("mbarrier.arrive.expect_tx.b64 _, [%0], %1;"); }

 }];

 }

Builds PTX automatically (no C++ need)

Generates register constraints:
"h" = .u16 reg

"r" = .u32 reg

"l" = .u64 reg

etc.

Generates read/write
"r"(y) read

"+r"(y) readwrite

"=r"(y) write

Supports predicates
@%p opcode

PTX instruction
Arguments are placed
automatically

Predicate is automatically placed

81

