OpenMP GPU Offload in Flang and LLVM

Gliray Ozen, Simone Atzeni, Michael Wolfe
Annemarie Southwell, Gary Klimowicz
NVIDIA Corp.
{gozen, satzeni, mwolfe, asouthwell, gklimowicz}@nvidia.com

Abstract—Graphics Processing Units (GPUs) have been
widely adopted to accelerate the execution of High Perfor-
mance Computing (HPC) workloads due to their enormous
computational throughput, ability to execute a large number
of threads inside SIMD groups in parallel, and their use of
multithreaded hardware to hide long pipelining and memory
access latency. However, developing applications able to
exploit the high performance of GPUs requires proper code
tuning. As a consequence, computer scientists proposed dif-
ferent approaches to simplify GPU programming, including
directive-based programming models such as OpenMP and
OpenACC. Their intention is to solve the aforementioned
programming challenges with a directive-based approach
which allows the users to insert non-executable pragma
constructs that guide the compiler to handle the low-level
complexities of the system.

Flang, a Fortran front end for the LLVM Compiler In-
frastructure, has drawn attention from the HPC community.
Although Flang supports OpenMP for multicore architec-
tures, it has no capability of offloading parallel regions
to accelerator devices. In this paper, we present OpenMP
Offload support in Flang targeting NVIDIA GPUs. Our
goal is to investigate possible implementation strategies
of OpenMP GPU offloading into Flang. The experimental
results show that our implementation achieve similar per-
formance to those of existing compilers with OpenMP GPU
offload support.

Index Terms—Flang, NVIDIA, GPU, Offload, OpenMP,
Clang, LLVM, compiler

I. INTRODUCTION

GPUs have taken a central role in increasing the per-
formance of HPC applications. Engineers and scientists
from different fields are using this type of accelerator
to speed up their simulations and research to obtain
answers faster. However, GPU programming is hard,
and it requires a greater effort from the developer to
expose a higher degree of parallelism compared to the
parallelism achieved by most existing HPC applications.
Higher-level programming models, such as OpenMP [1]
and OpenACC [2], provide a directive-based approach,
which makes it easier for the programmer to express
parallelism. Non-computer science experts, such as sci-
entists and engineers of different fields, can parallelize
their existing applications in a more straightforward
way by adding to specific code regions the directives
provided by the language, which guide the compiler to
handle the low level complexities of the systems (e.g.,
GPUs).

OpenMP is the de facto standard for achieving on-
node parallelism in HPC applications. Starting from
OpenMP version 4.0, the specification introduces target
offloading directives to allow programmers to annotate
specific regions of code which will be transferred at run-
time to an accelerator device. An OpenMP 4.0 compliant
compiler manages the offloading directive and generates
code for the specific accelerator device.

Fortran is one of the most widely-used programming
languages for scientific applications in the HPC commu-
nity. In 2015, the US Department of Energy and NVIDIA
announced the development of a Fortran front end for
LLVM [3], [4], which was open sourced in 2017 under the
name of Flang [5]. Flang supports OpenMP for multicore
but does not have any support for OpenMP offloading
to accelerator devices.

In this paper, we describe our work with Flang to
implement OpenMP GPU offloading target regions onto
NVIDIA GPUs. Our work focuses on delivering an effi-
cient implementation of the OpenMP offloading model
by taking advantage of the current LLVM OpenMP
project. We aim to maintain compatibility with Clang,
seamlessly generating device code for the NVPTX back
end [6] in LLVM.

The main contribution of this work involves the Flang
front end, from the parsing of the OpenMP offload
directives to the code generation for the NVIDIA GPU
architecture. We touch all the main phases of a compiler
front end, including the compiler driver which guides
the compilation toolchain. In our work, we implement
the parsing and semantic analysis of the OpenMP offload
directives and make the required changes to generate
the Abstract-Syntax Tree (AST) enhanced with OpenMP
offload information. Furthermore, we modified all the
Flang components that involve the transformation of the
AST to an intermediate representation of the device code.
Eventually, the AST is transformed into LLVM IR and
finally into the device code for NVIDIA GPUs.

To summarize, we make the following contributions:

o We show our design for integrating the OpenMP

offload model in Flang; our model targets NVIDIA
GPUs.

« We describe our implementation which is interoper-

able with Clang’s offload support.

« We conduct performance analysis on different

benchmarks. We compare our results to modern

compilers with offload support for NVIDIA GPUs.
This paper is organized as follows. Section II provides
some background about the Flang compiler and the
OpenMP programming model. We discuss related work
in Section III. Section 1V describes our implementation
and gives relevant details about integrating a GPU of-
fload mechanism in Flang. Section V shows experimental
results on well-known benchmarks using our implemen-
tation, and we compare them against the results obtained
with existing compilers such as PGI, Clang, and IBM XL.
Finally, Section VI discusses future work.

II. BACKGROUND

In this section, we describe the background concepts
and details about the LLVM compiler infrastructure and
the Flang Fortran front end necessary to understand our
work. We also explain the OpenMP offloading model
and the challenges of its implementation.

A. LLVM

LLVM Core [3], [4] is the main project of the LLVM
Project. It provides a source and target independent op-
timizer, along with code generation support for different
processor architectures. LLVM defines a strongly typed
Intermediate Representation inside the compiler called
LLVM IR which aims to abstract details from the target
architecture. The LLVM IR is the input source for the
LLVM back end which translates the IR instructions to
code for a specific target architecture (e.g., X86, Pow-
erPC, ARM, etc.).

1) Clang: Clang [7] is a front end for C and C++ which
uses and follows the implementation guidelines defined
by the LLVM community. One of the key efforts of Clang
is to ensure that each feature is structured into logical
modules in order to ease the integration and reduce
disruption caused by inter-dependencies. Following this
modular design, each action accomplished by the con-
sumers of each basic element (e.g., token, AST node)
tends to be self-contained, either by extending a default
action applied on top of a class or by creating a new
class.

2) OpenMP Runtime: The OpenMP sub-project in the
LLVM Compiler Infrastructure defines a collection of
runtime libraries and plugins to implement OpenMP
functionality in the Clang/LLVM compiler. The OpenMP
sub-project consists of a main runtime library, known as
libomp [8], which provides runtime functions and rou-
tines to support the OpenMP model during the execution
of a program. A second runtime library, called libomptar-
get [8], [9], supports the offloading of OpenMP regions
to target devices, including NVIDIA GPUs. Libomptarget
contains different plugins to support multiple devices in
a single program, while libomp provides support only for
the host device (i.e., CPU multicore).

The implementation of libomptarget consists of three
parts. The first one is a target-agnostic library, which

1$ flang -### -o myexample myexample.f90 -save-temps

2 "flangl" # .f --> ILM [Upper]

3 "flang2" # .ILM --> .11 [Lower]

4 "clang-6.0" # .11 --> .bc [Compile]

5 "clang-6.0" # .bc --> .s [Backend]

6 "clang-6.0" # .s --> .0 [Assemble]

7 "/usr/bin/1ld" # .o --> (exe) [Link]

Listing 1. An example of the Flang driver to compile a Fortran

program.

manages the mapping of data onto the accelerator device
and the execution of the OpenMP target regions. The
second part contains the device plugins for generic ELF-
based host devices and NVIDIA GPUs. The last part is
the device runtime library libomptarget-nvptx, which is
written in CUDA and implements the OpenMP runtime
for NVIDIA GPUs.

B. Flang

In this section, we describe Flang’s internals and com-
pilation pipeline.

1) Flang driver: The compiler driver is an important
part of the compilation pipeline because it allows the
user to combine several compiler steps into one. The
driver calls a set of tools which compiles the source
code into an executable program. The collection of re-
lated tools for the compilation process is known as a
toolchain. For example, different compilation “requests”
(commands) can have specific flags that require different
toolchains. The driver is responsible for selecting the
correct toolchain to proceed with the compilation and
produce the executable.

The Clang front end provides a compiler driver for C
and C++ which is usually invoked using the command
line alias clang. The Flang front end extends the Clang
driver with Fortran-specific features and defines an alias
to the clang command called flang. Listing 1 shows an
example of the Flang driver, and all its components in-
voked through the flang command, to compile a Fortran
code.

2) Upper - flangl : The flangl command, known as
“upper”, is the first step of the compiler invoked by
the driver; it reads the Fortran source code as input.
The upper consists of three main phases: (1) the scanner
which turns the Fortran code into tokens; (2) the parser
which builds the AST from the tokens, (3) and lower
which lowers the AST into ILM (Intermediate Language
Macros) code, which is an internal representation of a
subprogram’s executable statements created by the se-
mantic analyzer. The ILM code is written in a temporary
text file and is the input to the next step.

3) Lower - flang2 : The second step, known as “lower”,
executes the command flang2 on the ILM code produced
by the previous step. The first phase of lower is the
expander, which transforms the input ILM code into ILI
(Intermediate Language Instructions, also known as PGI

IR). The second phase consists of the optimizer, which
performs a first degree of optimization at the ILI level.
The last phase, performed by schedule, converts the ILI
to LLVM IR and saves it in a file. Once flang2 generates
the LLVM IR, the other driver steps (compiler, back end,
assembler, linker) eventually generate the executable.
The steps of the compilation toolchain after the LLVM
IR generation are not of interest in this work.

4) OpenMP Directive Processing: Flang supports
OpenMP for parallelization on multicore CPUs, based
on the LLVM OpenMP runtime. The OpenMP code
is handled by the same Flang compilation phases
previously discussed. The command flangl parses the
OpenMP directives and clauses, and performs the
semantic analysis before turning them into ILM. flang1
also produces error messages and warnings in case
of directive misuse. An important step during the
compilation process is outlining. The outlining process
creates additional functions whose bodies are the code
scope associated with the OpenMP directives. flang?2 is
responsible for this outlining, and inserts the necessary
runtime calls in the ILI code to manage the OpenMP
constructs such as target, parallel, task, etc. This
step will be discussed in more detail in Section IV.

C. OpenMP

OpenMP announced support for accelerators with ver-
sion 4.0, and the specification has been evolving continu-
ously since then. The current stable version is 4.5 which
offers a set of directives for offloading the execution of
code regions onto accelerator devices. The directives can
define target regions that will be mapped to the target
device, or define data movement between the host mem-
ory and the target device memory. The main directives
are target data and target, which create the data en-
vironment and offload the execution of a code region on
an accelerator device, respectively. Both directives can be
paired with a map clause to manage the data associated
with it; the map clause specifies the direction (to, from,
or tofrom) of the data movement between the host mem-
ory and the target device memory. Another important
directive defined by the OpenMP specification is teams,
which creates teams of threads. The programmer can
control the number of teams and the maximum number
of threads in each team by specifying the values with
the clauses num_teams and thread limit, respectively.
All the threads in a team, except the master, wait to
begin execution until the master thread encounters a
parallel region. The distribute directive specifies how
the iterations of one or more loops are distributed across
the master threads of all teams that execute the team
region. For instance, the loop at line 2 in Listing 2 is
parallelized by the master threads of each team, while
the loop at line 6 is parallelized across the threads within
a team.

1! $omp target teams distribute map(tofrom:a) map(to:b)
2do i =1,

3 alpha f1nd alpha ()

4

5 !$omp parallel do reduction(+:alpha)
6 do j =1, N

7 call do_process(a, b, alpha)

8 enddo

9 call finalize(a)

10 enddo

Listing 2. Example OpenMP offload code in Fortran.

a) Transformation Challenge for GPUs: OpenMP pro-
vides three levels of parallelism constructs: teams,
parallel, simd. All three are designed to map threads
across loops. These parallelism directives are designed
for the fork-join execution model. They can be used
together to create different levels of parallelism within
the same target region. The directives also introduce
implicit sequential and parallel regions, and implicit
barriers. The mapping of sequential and parallel regions
to a GPU is not trivial. GPU kernels can only be launched
with the number of threads and blocks specified in
advance, so once the kernel is running it means that all
GPU threads are available and active. To make differ-
ent parallelism levels coexist in the target region, the
compiler needs to follow complex code transformation
patterns.

A possible solution is to use “dynamic paral-
lelism” [10], which is a CUDA feature supported by
Kepler and newer NVIDIA GPU architectures. Dynamic
parallelism allows a CUDA kernel to launch another
CUDA kernel, emulating the fork-join model. Experi-
mental results show that dynamic parallelism introduces
significant overhead due to the high number of kernel
launches [11]; consequently, this approach is not an
efficient way to implement the fork-join model in a GPU.

To understand the challenges of OpenMP we use the
example in Listing 2, where the target directive creates
a data device environment with two arrays 4 and b as
specified in the map clause, and a scalar alpha which
will be implicitly declared firstprivate and automatically
mapped in the GPU memory. This code contains a loop
at line 2 whose iterations will be distributed among the
master threads of each team. Inside of this code block,
which will be executed by each team, there are two
hidden sequential regions, one at line 3 and one at line
9, which must be executed only by the master thread
of the team. One way to run a code region sequentially
on a GPU is to guard the region with an if-statement.
Later on, at line 7, this scalar will be used by all threads
in the team. Since the scalar is in the thread private
region, its value must be distributed among the rest of
the threads in the team when the code reaches the inner
parallel region at line 5. This operation can be difficult
for the compiler and the runtime in the presence of more
complex code blocks. In our example, the compiler will

map all the threads in the team to the loop’s iterations. If,
however, the user specifies a num_threads clause with
fewer threads, the runtime still launches the maximum
number of threads for the target; the compiler must
handle the rest of the (unneeded) threads.

III. ReLaTED WORK

The OpenMP target offload feature was added to the
specification in version 4.0. In the last few years, com-
piler vendors have been working on adding OpenMP
target offload support for NVIDIA GPUs. As of this
writing, IBM’s XL compiler supports OpenMP offload
in C, C++, and Fortran; Clang/LLVM supports OpenMP
offload in C, and C++. In this section, we describe some
of the relevant work that has been done to implement
OpenMP GPU offload in these compilers.

The first approach [12], [13], [14], [15], which we call
CUDA-like in this paper, introduces additional control
flow to coordinate GPU threads. When a program en-
counters a parallel region, the threads first execute a
conditional statement; if the threads are needed in the
region, they will execute it collectively. In this method,
one of the threads is chosen as the master thread, it
executes the sequential code regions, writes to a common
memory location, and synchronizes with the rest of the
threads at the end of a parallel region. The studies [12],
[13], [14], [15] using this approach show that this method
obtains the closest performance to that achieved by a
native CUDA programming model since it does not
increase the complexity of code transformation.

In [16], the authors introduce a novel approach based
on the concept of control-loop and inspection/execution;
this design is easier to implement respecting Clang
modularity than the CUDA-like design. They suggest
the implementation of a state machine for each code
region. In this approach, the master thread leads the
other threads to specific states; at the end of a state the
threads synchronize before proceeding to the next state.
This approach provides a straightforward integration for
modular compilers (e.g., Clang/LLVM), unfortunately, it
requires complex control flow which affects performance
of the generated code.

In [17], the authors propose an efficient fork-join al-
gorithm as a code transformation strategy for the imple-
mentation of directive compilation. It reserves a warp (a
unit of 32 threads) to serve as helper thread to execute
sequential code on the GPU. When the helper thread
reaches the parallel region, it can wake up other threads
to execute the parallel code.

There are other compilers that support the OpenMP
GPU offload targeting NVIDIA GPUs, such as Cray and
IBM XL Compiler. In particular, in [18], [19] the authors
describe IBM’s OpenMP 4.5 implementation with nu-
merous examples.

Fortran Code

clang-driver
\4
flang1
\4
flang2
Expander Expander
OpenMP CPU OpenMP GPU
A 4 Y
Schedule
\/ A\
host device
LLVM-IR LLVM-IR
[
llvm |Iibomptarget-nvptx.bc
llvm
y
ptxas
A\

[
libomptarget-nvptx.a

A

nvlink

libomptarget.so

Figure 1. Compilation workflow of Flang.

IV. INnTEGRATION OF GPU OFFLOAD SUPPORT INTO FLANG

In this section, we describe our OpenMP offload im-
plementation in Flang targeting NVIDIA GPUs. We give
details about the design principles and our implementa-
tion choices.

A. Design Principles

In our implementation of OpenMP GPU offload sup-
port in Flang, we aim to keep the same design as Clang
and guarantee full interoperability. In fact, we rely on
existing tools provided by the Clang front end, and we
follow its modular implementation. The first design goal
is to leverage the Clang/LLVM compiler driver, which
already offers support for OpenMP offloading targeting
NVIDIA GPUs. The second goal is the interoperability
between Flang and Clang, which we achieve by using

$ flang -o daxpy daxpy.f95 -fopenmp -fopenmp-targets=nvptx64-nvidia-cuda

Steps Tool Action

(@D)] "clang-offload-bundler" [unbundler]

(2) "flangl" [Chost) flang-frontend -
(3) "flang2" [Chost) flang-frontend -
(4) "clang-6.0" [Chost) Compile]

(5) "flangl" [(device) flang-frontend -
(6) "flang2" [(device) flang-frontend -
(@D) "clang-6.0" [(device) Compile]

(8) "ptxas" [(device) NVPTX::Assembler]
2 "nvlink" [(device) NVPTX::Linker]
(10) "/usr/bin/1d" [Chost) Linker]

Inputs Outputs
["daxpy.£f95"] ["tmpl.£f95","tmp2.£95"]
Upper] ["tmpl.£95"] ["tmpl.ilm"]
Lower] ["tmpl.ilm"] ["tmpl.11"]
["tmpl.11"] ["tmpl.s"]
Upper] ["tmp2.£95"] ["tmp2.ilm"]
Lower] ["tmp2.ilm"] ["tmp2.11"]
["tmp2.11"] ["tmp2.s"]
["tmp2.s"] ["tmp2.0"]
["tmp2.0"] ["tmp2.out"]
["tmpl.o"] ["daxpy"]

Listing 3. An example of the Clang/LLVM driver to compile a Fortran program using OpenMP GPU Offload.

the same code generation logic to ensure compatibility
with the LLVM OpenMP runtime. Figure 1 illustrates
Flang’s compilation workflow with OpenMP offload
support for NVIDIA GPUs. This support can be en-
abled by passing the command line option -fopenmp-
targets=nvptx64-nvidia-cuda to the driver.

We present our initial design which provides driver
and code generation support. We have implemented a
CUDA-like code transformation scheme based on a set
of OpenMP combined directives. This implementation
choice is driven by the fact that the combined directives
are the most common pattern used in OpenMP, and
the CUDA-like code transformation scheme introduces
the least complexity to the generated code. At the time
this paper is being written, we do not fully support
the OpenMP 4.5 accelerator model for Flang, but we
have chosen a commonly used set of OpenMP offload
directives.

B. Driver

As we mentioned in Section II-B1, the LLVM project
has a driver, clang, designed for the Clang front end.
In version 6.0 it started supporting OpenMP offload-
ing to NVIDIA GPUs. Clang’s driver consists of two
main parts: the clang-offload-bundler and the NVPTX
toolchain. The clang-offload-bundler is an external tool
in Clang designed to combine multiple files generated
by different compiler host and device toolchains. The
NVPTX toolchain is used to produce the object binary for
NVIDIA GPUs starting from the PTX code generated by
the LLVM compiler. It first invokes the CUDA ptxas pro-
gram to assemble PTX instructions into SASS, the low-
level assembly language for NVIDIA GPUs. Eventually,
it calls the CUDA linker, nvlink, to produce the object file
for the device.

We adapted the current offloading mechanism of the
clang driver to support OpenMP GPU offloading in
Flang. Listing 3 shows the overall workflow of flang
compiling Fortran code with OpenMP offload support
targeting NVIDIA GPUs. Initially, the driver invokes
the clang-offload-bundler, which makes two temporary
copies, tmp1.f95 and tmp2.f95, of the source input file.
Later on, these temporary files are used for the host

and device compilation. To adapt this step, we made
the clang-offload-bundler aware of the Fortran file ex-
tensions.

The driver then invokes flangl, flang2, and clang
-ccl in series to compile the code for the host target.
The compilation of the device code for the target triple
specified by the -fopenmp-targets option, which is the
NVPTX target in our example, happens when the driver
calls flangl and flang2 to generate the device code
for the NVPTX back end, then clang -ccl transforms
the generated code into PTX code. Finally, the NVPTX
toolchain produces the object code for the device. As
the last step, the driver calls the linker to generate the
executable.

The driver’s compilation pipeline provides interoper-
ability with Clang, but it reveals two major problems
due to the clang-offload-bundler tool. The first one is
that given an object file, the driver tries to unbundle it.
If this object file was compiled by a compiler other than
Flang/Clang, the clang-offload-bundler cannot unbundle
it and the compilation process fails. Another issue is
that bundled object files can be part of static libraries,
which requires unbundling by the clang-offload-bundler.
In this case, the driver needs to know where the files of
the library are before the linking step, making linking
against static libraries impossible. We understand there
is an attempt to solve both issues with the clang-offload-
bundler in future versions of Clang.

C. Code Transformation

In this section, we describe the code transformation
algorithms we implemented in flangl and flang2. Ini-
tially, we enhanced the parser and the semantic analyzer
in flangl to make them aware of the new device-
specific OpenMP offload directives. Then, we added new
functionality in flang2 to generate output code using the
NVPTX back end of LLVM.

1) flangl Extensions: The upper, flangl, was already
able to parse, perform semantic analysis, lower the
host OpenMP directives, and produce the ILM file. We
extended flangl with support for the device-specific
OpenMP directives and clauses.

1PROGRAM AXPY

implicit none
integer,parameter :: N =
real :: y(N), x(N), a
integer :: i

8192

!'$omp target parallel do map(to:x) map(tofrom:y)
doi=1, N
9 y(i) = a *
10 enddo

11 END PROGRAM

® N G W N

x(i) + y(@i)

Listing 4. Fortran example of a target region with mapped variables.

The OpenMP implementation in flangl leverages the
semantic analysis phase to prepare ILM code for use by
flang2. During this phase, flangl performs semantic
error checking and generates the symbol table and the
AST. In particular, the AST contains a node for each
OpenMP construct in the source code. flangl then trans-
forms the AST into ILM code. We expand and adapt
this mechanism to generate the appropriate ILM code
(from the AST nodes) for the device-specific OpenMP
constructs.

2) flang2 Extensions: We extended flang2 to generate
the LLVM IR for the NVPTX back end. To add this
feature we modified four phases of flang2: outliner,
expander, schedule, assemble. We left untouched the phases
for reading the input ILM and optimization.

a) Outliner: Outlining is a code generation concept
which consists of extracting a function from the code
scope of the host function to generate the device equiv-
alent function. Outlining is the most common technique
used to implement OpenMP constructs that transform
sequential code into parallel code; LLVM’s OpenMP
runtime is based on this approach. The example in
Listing 4 shows the directives target and parallel
which Flang outline into two new functions, and adds
the appropriate runtime calls to invoke these functions.
Eventually, flang2 generates LLVM IR code as shown in
Listing 5.

Although the outlining concept is implemented in
Flang for CPU OpenMP, it is not in a form suitable for the
libomptarget runtime which we use for Flang OpenMP of-
fload. For NVIDIA GPU offloading, we use the outlined
functions that are created in GPU code, since the GPU
has a separate memory space and can be called only
via the CUDA driver. The libomptarget library provides
two functions, tgt target and tgt target teams, to
launch outlined functions and process the necessary data
transfer for them. These outlined functions are required
to have a specific signature—one parameter for each
symbol that occurs inside of the host region. With this
information, the function can be launched and the data
mapping can be done correctly between host and device.
The functions require arrays of the base address of the
symbols, map-types, and size.

1%struct.BSS1 =
23

type <{ [65536 x i8] }>
Global BSS1 keeps array x and array y on the main memory

3@BSS1 = internal global %struct.BSS1 zeroinitializer
4

sdefine void @MAIN_(Q) {

6 ; < other IRs>

7 %0 = call i32 @__kmpc_global_thread_num(...)

8 call void
9 ret void
10}

11define internal void @target(i32* %A0, i64* %Al, i64* %A2){
12 call @__kmpc_fork_call(..., %par, ...)

13 ret void

14}

15define internal void @par(i32* %A0, i64* %Al, i64%* %A2){

16 call void @__kmpc_for_static_init_4¢(...)

17 ; find array y from @BSS1

@target (i32* %0, ...)

18 %0 = bitcast %struct.BSS1* @.BSS1 to i8*
19 %1 = getelementptr i8, i8* %0, i64 32764
20 %2 = bitcast i8* %38 to float*

21
2 %3

find array x from @BSS2

bitcast %struct.BSS1* @.BSS1 to i8*
23 %4 getelementptr i8, i8%* %3, i64 -4

24 %5 bitcast i8* %4 to float*

25 ; <the rest of loop body>

26 call void @__kmpc_for_static_fini(...)
27 ret void

28}

Listing 5. Outlining example by Flang OpenMP multicore. The output
LLVM IR is generated from the Fortran source in Listing 4

Flang does not extract the outlined functions in this
way, which introduces two issues. The first, as shown in
Listing 5 at lines 11 and 15, is that Flang always gener-
ates functions with three parameters. The second issue
is that Flang’s outlining does not create new symbols,
pack, and pass them to the function. Instead, it uses
the existing symbols no matter where they are located.
Unfortunately, this approach cannot be used for GPU
offload since the GPU device has its own memory space.
In the example in Listing 4, there are two static arrays, x
and y, at line 4, these are also read and written in the loop
body at line 9. Flang defines them as global variables at
lines 1-3 in Listing 5. Thus, in the rest of code, these
arrays are read and written via these global variables as
shown at lines 18-20 and 22-24. These two arrays should
be created on the GPU, and mapped according to their
map information specified in the map clause at line 7 in
Listing 4.

To adapt Flang’s outlining to the libomptarget interface,
we implemented a new outlining mechanism in Flang.
The new mechanism extracts a function with parameters
for each symbol that is used in the region. In addition,
the new outliner generates a true autonomous function
which is not dependent on any global or shared variables
of the host function. In Listings 6 and 7 we illustrate the
output LLVM IR core of the new outliner, in particular
one for the NVIDIA GPU and one for the host machine;
we will explain the code separation process in the next
paragraphs.

The new outlining mechanism extracts the function for
the target region (at line 4 of Listing 6) and generates
it in a different file. We did not do any outlining in

1target triple = "nvptx64-nvidia-cuda"

2; < other IRs>

3

4define ptx_kernel void @MAIN__1F1L10_([8192 x float]*
%Arg_y, [8192 x float]* %Arg_x, float %Arg_alpha) {

5 call void @__kmpc_for_static_init_4(...)

6 ; find array y from %Arg_y

7 ; find array x from %Arg_x

8 ; find array x from %Arg_alpha

9 ; <the rest of loop body>

10 call void @__kmpc_for_static_fini(...)

11 ret void

12}

Listing 6. Generated device code for NVPTX back end of LLVM. The
output LLVM IR is generated from the Fortran in the Listing 4.

the device code because creating extra functions in-
creases the complexity for compiler optimization, and
may also cause a performance slowdown. Thus, the new
mechanism does not extract any additional functions for
any OpenMP directives after the target construct. The
extracted function is called by the tgt target teams
runtime function of the libomptarget library, as shown at
line 29 of Listing 7. The base addresses of each function
parameter are packed into an array %args. Later on,
the runtime separates this array into multiple arguments
and communicates it to the CUDA driver to pass these
arguments to the outlined function.

b) Expander: The primary purpose of the expander
phase is to translate the ILMs produced by flangl into
ILIs, the internal language that is used by later phases
of the compiler such as optimization or LLVM IR trans-
formations. During ILM to ILI translation, the ILIs are
grouped into blocks, where the extent of a block is deter-
mined by certain compiler options and the characteristic
of the ILMs control flow. The internal representation is
created by the expander, which represents the terminal
nodes of an ILI statement. An ILI statement may be a
function call, a store instruction, a register move, or a
branch. A sequence of ILTs represents a block of ILIs.
An ILT is the terminal node of an ILI statement which
roughly corresponds to a source language statement.
Each ILT includes links to previous and next pointer of
the ILI tree. In addition, the expander is also responsible
for making the correct ILI transformation from OpenMP
ILMs.

OpenMP GPU offloading is a different concept of par-
allelism than multicore parallelism, thus, it requires dif-
ferent code transformations. To support different types of
parallelism in Flang, we extended the current expander, in
particular the transformation functions of the OpenMP
ILM nodes. We did not change the expander’s sequential
code generation.

¢) Schedule - LLVM-Bridge: The LLVM-Bridge con-
sists of schedule and assemble phases of flang2. In the
schedule phase, the ILI generated by the expander is

1target triple =
2; < other IRs>
3

4%struct.BSS1 = type <{ [65536 x i8] }>

5; Global BSS1 keeps array x and array y on the main memory
6@BSS1 = internal global %struct.BSS1 zeroinitializer

7

gdefine void @MAIN_(Q) {

"powerpc64le -unknown-linux-gnu"

9 %args = alloca [3 x i8%*], align 16

10 ; < other IRs>

1 %2 = bitcast %struct.BSS1* @.BSS1 to i8*
12 %3 = getelementptr i8, i8%* %2, i64 32768
13 %4 = bitcast [3 x i8%*]* %args to i8%**

14 store i8% %3, i8** %4, align 8

15 ; < other IRs>

16 %12 = bitcast %struct.BSS1* @.BSS1 to i8*
17 %13 = bitcast [3 x i8*]* %args to i8*

18 %14 = getelementptr i8, i8% %13, i64 8
19 %15 = bitcast i8* %14 to i8**

20 store i8%* %12, i8+** %15, align 8

21 ; < other IRs>

2 %28 = load float, float* %alpha_305, align 4
23 %29 = bitcast [3 x i8*]* %args to i8*

24 %30 = getelementptr i8, i8%* %29, i64 16

25 %31 = bitcast i8* %30 to float*

2 store float %28, float* %31, align 4

27 ; < other IRs>

28 %47 = bitcast [3 x i8%]* %args to i64*

29 %50 = call i32 @__tgt_target_teams(..., 164* %47, ...)
30

31 ret void

32}

Listing 7. Generated host code for PowerPCé4le of LLVM. The output
LLVM IR is generated from the Fortran in the Listing 4.

transformed into LLVM IR. While doing this, the sched-
ule creates its own structures to build LLVM IR inter-
nally. This phase generates a LL Module struct which
keeps all the information about the llvm module. Even-
tually these internal structures are written as an LLVM
IR file.

To implement OpenMP GPU offload, we extended
the schedule phase. First, we make it aware of multiple
LL Module structs, where each struct corresponds to
a different target. The schedule phase is capable of
generating LLVM IR into an LL__Module. Eventually, the
assemble phase turns them into LLVM IR and writes them
into different files.

V. ExPERIMENTAL EVALUATION

We evaluate Flang OpenMP offload support for
NVIDIA GPUs on two benchmark applications. We com-

Compiler Flags

Flang

-03 -M -f
OpenMP Multicore preprocess Zopentip

Flang (this work) -O3 -Mpreprocess -fopenmp

OpenMP GPU -fopenmp-targets=nvptx64-nvidia-cuda
NVIDIA PGI -Mpreprocess -fast -ta=tesla,cc60,cuda8.0 -mp
IBM XLF -gsmp -qoffload -qpreprocessor -O3

-03 -f
Clang 7.0 O3 -fopenmp

-fopenmp-targets=nvptx64-nvidia-cuda

TABLE I
COMPILERS STUDIED IN OUR EXPERIMENTS.

dAXPY Benchmark

12 14

10
I
S9'S

Speedup vs. Flang single-core

8E'Y

€

SPEC ACCEL 360.ilbdc Benchmark

250

200
Il

Speedup vs. Flang single-core
100
1

test train ref

Dataset Size

8M 16M 32M
Array Size
W PGI 18.7 + CUDA 8.0 M IBM XLF
B NVIDIA PGI 18.7 OpenACC W Clang 7.0

Clang 7.0 + "schedule(static, 1)"
M Flang + libomptarget.so + libomptarget-nvptx.a

M Flang + Ixlsmp.so + libomptarget-nvptx.a
W Flang + Ixlsmp.so + libomptarget-nvptx.bc

Figure 2. Execution speedup evaluation for the dAXPY application
compiled with different compilers, and executed with three different
array sizes.

pare Flang’s results with those of two other compilers
that currently support OpenMP offloading: Clang 7.0
and IBM XL 16.0.1. Additionally, we make a comparison
of Flang’s results to the OpenACC version of the same
benchmarks compiled with NVIDIA PGI 18.7.

We run our experiments on a system with 2 10-core
IBM POWERSNVL processors, with 1024GB of memory,
running Ubuntu 16.04, with three NVIDIA Pascal GPUs
with 3584 CUDA cores, compute capability 6.0, and
12GB of device memory. Each Pascal GPU includes 56
Streaming Multiprocessors (SM), each with 64 CUDA
cores, and NVlink [20] technology. We obtain Flang from
the NVIDIA internal repository. CUDA 8.0 toolkit is used
with all the compilers.

Table I shows the compilers and compilation options
we used for the experiments in this paper.

1) AXPY: AXPY is an application whose name stands
for A*X plus Y, which is a function from the Basic
Linear Algebra Subroutines (BLAS) [21] library. AXPY
is a combination of scalar multiplication and vector
addition, it takes as input two vectors X and Y with
N elements each, and a scalar value A. We use dif-
ferent versions of AXPY. We implement a version of
the AXPY application in Fortran and annotate the
compute loop with the OpenMP !$omp target teams
distribute parallel do directive. We also created an
OpenACC version using ! $acc parallel loop from the

Figure 3. Execution speedup evaluation for the 360.ilbdc application
from the SPEC Accel benchmark suite compiled with different com-
pilers, executed with different dataset sizes.

OpenACC directives. Finally, we implemented a C ver-
sion which we also parallelized with the same OpenMP
directives as the Fortran version.

Figure 2 shows the speed up of AXPY using differ-
ent compilers over sequential version runs on a CPU.
The results show poor performance for the Clang com-
piler. Our investigation revealed that the Clang compiler
schedules the loop with block scheduling, which breaks
the coalesced memory access pattern, resulting in poor
performance. We added the schedule(static,1) clause
to the code and the experimental results show the effec-
tiveness of our solution. Even though these experiments
used the same runtime libraries for both Clang and
Flang, the results yield better performance with the
Flang compiler. The reason is that Flang does not apply
outlining in the device code, which creates opportuni-
ties for the compiler to enable different optimizations.
Conversely, Clang extracts a function for each OpenMP
construct which might decrease the performance of gen-
erated code. We also compare the performance of the
Flang compiler using the libxIsmp offload runtime library
from the IBM XL compiler to libomptarget. Since these
two runtimes support the same interface, we did not
have to modify the code generation. In this case, we ob-
served that IBM’s offload runtime performs better than
libomptarget. We show the performance of NVIDIA PGI
and IBM XL compilers, on the OpenACC and OpenMP
versions of AXPY, which both have better performance

compared to the LLVM compilers. The best performance,
as shown in the plot, are obtained with the native
CUDA implementation of the benchmark, that for our
experiments we compiled with PGL

2) SPEC ACCEL - 360.ilbdc: The 360.ilbdc is one of the
applications of the SPEC ACCEL [22] benchmark suite;
it implements an algorithm to solve problems related to
fluid mechanics. The code is written in Fortran and uses
a minimal number of OpenACC and OpenMP directives.

Figure 3 shows the speedups of the application built
with different compilers compared to the sequential
version run on a CPU. We ran the benchmark with
three datasets of different sizes called test, train, and
ref. Flang shows performance close to the other com-
pilers, demonstrating its capability to take advantage of
the massive parallel architecture of GPUs. Again, we
followed the strategy of linking Flang-generated code
with IBM’s offload runtime. This experiment also yields
better performance, we suspect the runtime processes
data transfers and kernel launches in a more efficient
way. Finally, the OpenACC version compiled with the
NVIDIA PGI compiler shows the best performance. We
believe PGI compiler applies several GPU-specific opti-
mizations.

VI. Concrusions AND FuTure WoRrk

In this paper, we describe our initial implementation
of OpenMP GPU offload in Flang targeting NVIDIA
GPUs. Our study shows that Flang can efficiently take
advantage of the massive parallel architectures of GPUs
using OpenMP directives. Our compiler implementation
in Flang allowed us to experiment with different code
generation strategies. In this work we used the CUDA-
like code transformation strategy in an attempt to obtain
performance closer to native CUDA. Finally, we tried
to emphasize this aspect supported by an experimental
evaluation on two benchmark applications. We also com-
pared our implementation with other modern compilers.

A possible next step in Flang would be to provide
a complete OpenMP device model. We left supporting
uncombined directives as future work, since that im-
plementation requires a different code transformation
strategy. More extensions in the programming model
itself may be introduced for user-directed optimizations
that allow the compiler to use more sophisticated ap-
proaches.

REFERENCES

[1] “OpenMP - Application Program Interface,”
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf.

[2] “The OpenACC - Application Programming Inter-
face,” https://www.openacc.org/sites/default/files/inline-
files/OpenACC.2.6.final.pdf.

[3] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in CGO, 2004, pp.
75-86.

[4] C. Lattner, in FOSDEM, 2011.

[5] N.PGI, “Flang compiler,” https://github.com/flang-compiler, 2017.

[6] N. Corp., “NVVM IR Specification,”

https://docs.nvidia.com/cuda/nvvm-ir-spec/index.html.

[7] “Clang: a C language family frontend for
http://clang.llvm.org.

[8] “OpenMP Runtime Library,” https://openmp.llvm.org.

[9] S.F. Antao, A. Bataev, A. C. Jacob, G.-T. Bercea, A. E. Eichenberger,
G. Rokos, M. Martineau, T. Jin, G. Ozen, Z. Sura, T. Chen, H. Sung,
C. Bertolli, and K. O’Brien, “Offloading support for OpenMP in
Clang and LLVM,” in Proceedings of the Third Workshop on LLVM
Compiler Infrastructure in HPC, ser. LLVM-HPC "16, 2016, pp. 1-11.

LLVM,”

[10] “CUDA dynamic parallelism API and principles,”
https://devblogs.nvidia.com/cuda-dynamic-parallelism-api-
principles/.

[11] J. Wang and S. Yalamanchili, “Characterization and analysis of
dynamic parallelism in unstructured GPU applications,” in 2014
IEEE International Symposium on Workload Characterization, IISWC
2014, Raleigh, NC, USA, October 26-28, 2014, 2014, pp. 51-60.

[12] S. Lee and J. S. Vetter, “OpenARC: extensible OpenACC compiler
framework for directive-based accelerator programming study,”
in Proceedings of the First Workshop on Accelerator Programming us-
ing Directives, WACCPD '14, New Orleans, Louisiana, USA, Novem-
ber 16-21, 2014, 2014, pp. 1-11.

[13] V. G. V. Larrea, W. R. Elwasif, O. Hernandez, C. Philippidis,
and R. Allen, “An in depth evaluation of GCC’s OpenACC
implementation on cray systems,” 2017.

[14] G. Ozen, E. Ayguadé, and]J. Labarta, “On the roles of the
programmer, the compiler and the runtime system when pro-
gramming accelerators in OpenMP,” in Using and Improving
OpenMP for Devices, Tasks, and More - 10th International Workshop
on OpenMP, INOMP 2014, Salvador, Brazil, September 28-30, 2014.
Proceedings, 2014, pp. 215-229.

[15] X. Tian, R. Xu, Y. Yan, Z. Yun, S. Chandrasekaran, and B. M.
Chapman, “Compiling a high-level directive-based programming
model for gpgpus,” in Languages and Compilers for Parallel Comput-
ing - 26th International Workshop, LCPC 2013, San Jose, CA, USA,
September 25-27, 2013. Revised Selected Papers, 2013, pp. 105-120.

[16] C. Bertolli, S. F. Antao, A. E. Eichenberger, K. O. Z. Sura, A. C.
Jacob, T. Chen, and O. Sallenave, “Coordinating GPU threads for
OpenMP 4.0 in LLVM,” in 2014 LLVM Compiler Infrastructure in
HPC, Nov 2014, pp. 12-21.

[17] A. C. Jacob, A. E. Eichenberger, H. Sung, S. F. Antao, G. Bercea,
C. Bertolli, A. Bataev, T. Jin, T. Chen, Z. Sura, G. Rokos, and
K. O’Brien, “Efficient fork-join on GPUs through warp special-
ization,” in 2017 IEEE 24th International Conference on High Perfor-
mance Computing (HiPC), Dec 2017, pp. 358-367.

[18] L. Grinberg, C. Bertolli and R. Haque, “Hands on with
openmp4.5 and unified memory: Developing applications for
ibm’s hybrid cpu+gpu systems (part i),” in Scaling OpenMP for
Exascale Performance and Portability, B. R. de Supinski, S. L. Olivier,
C. Terboven, B. M. Chapman, and M. S. Miiller, Eds., 2017, pp.
3-16.

[19] ——, “Hands on with openmp4.5 and unified memory: Devel-
oping applications for ibm’s hybrid cpu+gpu systems (part ii),”
in Scaling OpenMP for Exascale Performance and Portability, B. R.
de Supinski, S. L. Olivier, C. Terboven, B. M. Chapman, and M. S.
Miiller, Eds., 2017, pp. 17-29.

[20] “NVlink,” https://blogs.nvidia.com/blog/2014/11/14/what-is-
nvlink.

[21] “Basic linear Algebra Subprograms (BLAS),” in Encyclopedia of
Parallel Computing, 2011, p. 120.

[22] G.Juckeland, W. C. Brantley, S. Chandrasekaran, B. M. Chapman,
S. Che, M. E. Colgrove, H. Feng, A. Grund, R. Henschel, W. W.
Hwu, H. Li, M. S. Miiller, W. E. Nagel, M. Perminov, P. Shelepu-
gin, K. Skadron, J. A. Stratton, A. Titov, K. Wang, G. M. van
Waveren, B. Whitney, S. Wienke, R. Xu, and K. Kumaran, “SPEC
ACCEL: A standard application suite for measuring hardware
accelerator performance,” in High Performance Computing Systems.
Performance Modeling, Benchmarking, and Simulation - 5th Interna-
tional Workshop, PMBS 2014, New Orleans, LA, USA, November 16,
2014. Revised Selected Papers, 2014, pp. 46-67.

