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Abstract
Accelerated computing has increased the need to special-
ize how a program is parallelized depending on the target.
Fully exploiting a highly parallel accelerator, such as a GPU,
demands more parallelism and sometimes more levels of
parallelism than a multicore CPU. OpenMP has a directive
for each level of parallelism, but choosing directives for each
target can incur a significant productivity cost. We argue that
using the new OpenMP loop directive with an appropriate
compiler decision process can achieve the same performance
benefits of target-specific parallelization with the productiv-
ity advantage of a single directive for all targets. In this paper,
we introduce a fully descriptive model and demonstrate its
benefits with an implementation of the loop directive, com-
paring performance, productivity, and portability against
other production compilers using the SPEC ACCEL bench-
mark suite. We provide an implementation of our proposal
in NVIDIA’s HPC compiler. It yields up to 56X speedup and
an average of 1.91x-1.79x speedup compared to the base-
line performance (depending on the host system) on GPUs,
and preserves CPU performance. In addition, our proposal
requires 60% fewer parallelism directives.

CCS Concepts: • Software and its engineering → Com-
pilers; Parallel programming languages; • Computer
systems organization → Heterogeneous (hybrid) sys-
tems.

Keywords: Compilers, Parallel Programming, GPUs, OpenMP

ACM Reference Format:
Guray Ozen andMichaelWolfe. 2022. Performant Portable OpenMP.
In Proceedings of the 31st ACM SIGPLAN International Conference
on Compiler Construction (CC ’22), April 02–03, 2022, Seoul, South
Korea. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3497776.3517780

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
CC ’22, April 02–03, 2022, Seoul, South Korea
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9183-2/22/04. . . $15.00
https://doi.org/10.1145/3497776.3517780

1 Introduction
Heterogeneous computers are now common for High Per-
formance Computing. Programming heterogeneous systems
requires the following steps:

1. Moving Data: determining, if the device has separate
memory, which data to copy to the accelerator and
back, and when.

2. Identifying Parallelism: deciding which loops or code
blocks can be executed in parallel.

3. Target specific optimizations: mapping program paral-
lelism to hardware parallelism, including loop sched-
uling, reordering, etc.

4. Device code: generating binary code for the target
device.

In low-level programming models such as CUDA [25],
OpenCL [18], pthreads [4], or vector intrinsics [15], the pro-
grammer is responsible for the first three steps and the last
item is done by the compiler. Although it is possible to de-
velop very efficient programs, productivity is low.

The OpenMP [26] API is a directive-based parallel pro-
gramming model developed to address productivity and per-
formance as well as portability across target systems. It has
mostly followed a prescriptive philosophy where program-
mers choose parallelization strategies and specify these to
the compiler and runtime. In this article we call this approach
the Prescriptive OpenMP Model. Early studies showed how
this model can be implemented in GPUs [1, 2, 19, 21, 27, 28].
Although directives definitely simplify programming, the
programmer is still responsible for the first three steps above.
Moreover, these steps may need to be repeated for each
target, as exploiting parallelism may be significantly dif-
ferent for different target devices. Furthermore, different
OpenMP implementations interpret some directives differ-
ently [5, 7, 11, 23], meaning different implementations may
require different directives. This canmake OpenMP program-
ming for heterogeneous systems a daunting task.

We propose a fully descriptive OpenMP model with com-
piler based automatic parallelism mapping to increase all
three of performance, portability, and productivity of OpenMP
programming. This is not automatic parallelization. Our
model lets the programmer tell what loops to parallelize,
but not how to parallelize them, shifting this burden from
the programmer to the compiler. By doing so, we improve
portability and productivity by reducing the number of di-
rectives and clauses. We also get a performance advantage
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with our approach because the model is more scalable for
massive architectures such as GPUs, and allows use of an
optimized Single Program Multiple Data (SPMD) code gen-
eration strategy.
Our model uses the OpenMP loop construct, which was

introduced with OpenMP 5.0, to allow the compiler to implic-
itly decide how to map parallelism. We have implemented
our model and here evaluate its performance. Our contribu-
tions include:

• A simpler, descriptive OpenMP programming model,
where the programmer says what to parallelize instead
of how to do so.

• A programming model that can always run in SPMD
mode, for which the compiler can generate performant
code for multicore CPUs as well as highly parallel
GPUs.

• An implementation of this model in NVIDIA’s HPC
compiler1.

• Evaluation of the performance of our model against
other current compilers with the SPEC ACCEL[17]
benchmark suite. Our implementation yields up to
56X speedup and an average of 1.91x-1.79x speedup
compared to the baseline performance (depending on
the host system), and outperforms other compilers on
GPUs, and matches or outperforms other compilers
on CPUs.

• Evaluation of the productivity of our model by count-
ing the number of parallelization directives and clauses
required for heterogeneous programming compared
to the Prescriptive OpenMP Model code. Our model
requires 60% fewer parallelism directives while giving
the performance benefits mentioned.

• Evaluation of the portability benefits of our model by
comparing the performance of the same benchmarks
on both GPU and CPU targets. Our model achieves
equivalent or better performance to the baseline pre-
scriptive OpenMP code on both GPU and CPU targets.

2 Background
2.1 NVIDIA GPUs and the CUDA Programming

Model
This section provides an overview of the architecture of the
current NVIDIA GPUs and the CUDA execution model. A
GPU has a number of Streaming Multiprocessor (SM) units,
where an SM roughly corresponds to a CPU core. Each SM
has a large register file, a number of integer and floating
point ALUs, instruction fetch units, branch processing units,
load-store units, control units, and a small level 1 data cache.
An instruction is fetched, decoded, and dispatched, just as
on a CPU, except GPU threads are organized into groups of
32 threads, called a warp; all enabled threads in the warp
will execute the same instruction at the same time.
1Formerly the PGI Compiler

In a CUDA program, the programmer writes kernels to
execute on the GPU, and launches the kernel with a launch
configuration that describes howmany GPU threads to create.
The GPU threads are grouped into a grid of thread blocks
of threads, where the grid and the thread blocks may be
described by a 1-, 2-, or 3-dimensional rectangle. The threads
in any single thread block will be launched simultaneously
on a single SM where they can coordinate and share some
resources.

2.2 OpenMP
The OpenMP API[26] provides a set of directives to offload
the execution of code regions onto accelerators, to map loops
inside those regions onto the resources available in the device
architecture, and to map and move data between address
spaces. The main offload directives are target data and
target, which create the data environment and offload the
execution of a code region to an accelerator device, respec-
tively. In classical OpenMP programs, the program creates a
single team of threads, and uses the parallel and for or do
constructs to workshare loop iterations across those threads.
To take advantage of the higher degree of parallelism in
GPUs, OpenMP added a teams construct to create multiple
teams of threads. When teams are created, only the primary
thread of each team is active until it encounters a parallel
construct, which activates the other threads in the team. The
distribute construct specifies how the iterations of a loop
are workshared across the teams, just as the for or do con-
structs specify how the iterations of a loop are workshared
across the threads within a team.

3 Motivation
In this section, we highlight two issues related to the Prescrip-
tive OpenMP Model’s design with respect to productivity
and portability. First, since Prescriptive OpenMP requires a
directive or clause for every parallelization decision, the user
has to specify each choice, even the simplest ones, reduc-
ing productivity. Additionally, the user may have to repeat
this decision-making for different devices if the devices are
fundamentally different, such as a CPU and a GPU. Second,
the OpenMP model is typically fork-join, whereas the native
execution model on current GPUs is SPMD. If the OpenMP
region can be converted to use SPMD execution, it will run
more efficiently on a GPU. If not, the implementation must
use a more complex thread management runtime, resulting
in inferior performance. These two important issues moti-
vate our research.

3.1 Performance Portability in the Prescriptive
OpenMP Model

When we look at OpenMP from a high level, there are three
constructs to create parallelism: teams, parallel, and simd.
The teams construct is a way to execute code across multiple
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Table 1. The top table shows the mapping of Prescriptive
OpenMP Model parallelism directives to parallelism in the
hardware. The table below shows which work-sharing di-
rectives use OpenMP parallelism. The model is prescriptive;
for example, the teams directive yields parallelism for GPUs,
but no parallelism for CPUs. This means the programmer
must write different directives for each device.
Directive CPU GPU
teams Sequential CUDA thread blocks
parallel CPU threads CUDA threads
simd Vector Instructions Sequential
Directive Workshare
distribute teams parallelism
for/do thread Parallelism

teams of processors, for example, thread blocks in the GPU.
The parallel construct executes across the processors or
threads in a single team. The simd construct controls vector
or SIMD parallelism. Several current compilers including
ours map these constructs as shown in Table 1. To leverage
the massive parallelism of a GPU with this mapping, a pro-
grammer should use teams and parallel, while mapping to
a CPU requires parallel and simd constructs. An OpenMP
compiler, however, may choose to use a different mapping,
for instance, using simd for thread parallelism and parallel
for warp parallelism on a GPU. This means a programmer
may have to use different directives based not only on the
target system, but on the compiler implementation. This
makes it difficult to achieve performance portability with a
prescriptive programming model.
An example of the portability and productivity problem

is when a programmer needs to use different directives for
different targets. One way to do this is with a preprocessor
to select different directives for each target. Figure 1 shows
a snippet extracted from the 553.pclvrleaf program in the
SPEC ACCEL benchmark suite [17]. Here the programmer
has written each directive set twice for different settings
of the SPEC_USE_INNER_SIMD macro. When the macro is
defined, the outer loops are parallelized across teams and
threads, while the inner loops are vectorized with the simd
directive, as would be appropriate for a CPU architecture.
For a GPU, it is usually better to collapse the loops, to ensure
enough parallelism in all hardware dimensions, as when the
macro is not defined.

There are 892 uses of this macro in this benchmark suite.
Other directives could be optimal depending on the target or
implementation or loop limits, but would require even more
preprocessor macros. Repeating many of the same directives
or clauses in different macro paths increases development
and maintenance costs. The use of macros does not allow for
optimized code for both CPU and GPU, so you can’t create a
single program with optimized code for both CPU and GPU.
This further demonstrates portability and productivity costs,
as well as functionality limitations.

1 !$omp target teams
2 #ifdef SPEC_USE_INNER_SIMD
3 !$omp distribute parallel do private(j,k)
4 #else
5 !$omp distribute parallel do simd collapse(2)
6 #endif
7 DO k=y_min,y_max
8 #ifdef SPEC_USE_INNER_SIMD
9 !$omp simd
10 #endif
11 DO j=x_min,x_max+1
12 vol_flux_x(j,k)= 0.25_8*dt*xarea(j,k)*(xvel0(j,k)&
13 + xvel0(j,k+1)+xvel1(j,k)+xvel1(j,k+1))
14 ENDDO
15 ENDDO
16 #ifdef SPEC_USE_INNER_SIMD
17 !$omp distribute parallel do private(j,k)
18 #else
19 !$omp distribute parallel do simd collapse(2)
20 #endif
21 DO k=y_min,y_max+1
22 #ifdef SPEC_USE_INNER_SIMD
23 !$omp simd
24 #endif
25 DO j=x_min,x_max
26 vol_flux_y(j,k)= 0.25_8*dt*yarea(j,k)*(yvel0(j,k)&
27 + yvel0(j+1,k)+yvel1(j,k)+yvel1(j+1,k))
28 ENDDO
29 ENDDO
30 !$omp end target teams

Figure 1. A code snippet from the 553.pclvrleaf program
in the SPEC ACCEL. The first problem is that in order to
get the best performance from different compilers, it may
be necessary to write new directives under a new macro.
The second problem is that a single binary cannot include
performant code for CPU and GPU. In the end, each device
requires different binaries, and each compiler requires differ-
ent macros.

With the intention of allowing a single executable to
be optimized for each target, OpenMP 5.0 introduced the
metadirective, giving programmers the ability to write
separate directives for each target device in the same source
without relying on preprocessing. We think that it addresses
the functionality issues that are missing when using macros,
but it has the same productivity costs since the programmer
is still responsible for writing different directives for each
device and implementation.

3.2 Performance Problems of Prescriptive OpenMP
Model on GPU

A major performance challenge facing OpenMP implemen-
tations for GPUs is the fork-joinmechanism of the parallel
construct. OpenMP defines that when a program encounters
a parallel, the threads will be activated. However, once a
GPU kernel is launched, all GPU threads are already active.
The user can dynamically select the number of threads, can
set a different number of threads to each parallel inside
the same target construct which generates a GPU kernel.
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It is also possible to write special code for each thread using
OpenMP APIs. The OpenMP model also requires serial ex-
ecution of the teams region, that is, code in a teams region
but not in parallel regions.

The native execution model for a GPU is SPMD. If a com-
piler can convert the program to use an SPMD model, it will
run much more efficiently. However, many programs written
in the Prescriptive OpenMP Model cannot be automatically
optimized to use SPMD.

3.2.1 Implementing Fork-Join. In this section, we de-
scribe various methods of implementing fork-join on the
GPU that have been presented or implemented.
Outlining [8]: The most common method to implement the
parallel construct on CPUs is to outline the construct and
have the OpenMP runtime fork threads to run the construct.
However, GPUs cannot actually fork threads. Instead, the
runtime parks all GPU threads but the primary thread at
a synchronization point. The primary thread executes the
teams region. When it encounters a parallel construct, it
wakes the other threads to execute the outlined region of
parallel construct. One hindrance is that GPU threads can-
not share local (stack) data. Therefore, shared data owned
by the primary thread must be written to global or shared
memory, which can be costly.
State-machine[2, 3]: Another method is to use a state-
machine. At the start, the primary thread starts running
the teams region while the other threads wait for the pri-
mary thread to determine their next state. When the next
state designates a parallel region, all threads become ac-
tive and share the work until the parallel region completes.
At that point, all threads except the primary thread again
go into a wait state. This technique suffers performance loss
when encountering calls to functions that potentially contain
parallel code.
Dynamic parallelism[3, 29]: In this method, the teams
region starts with one primary thread. When the thread en-
counters a parallel construct, it launches a new kernel
using CUDA dynamic parallelism [24], where the body of
the construct has been outlined to a new kernel. Launching
kernels using CUDA dynamic parallelism comes with sig-
nificant overhead[12, 31]; this method is not used by any
current compiler.
Efficient fork-join [16]: The implementation designates
one warp as the primary-warp, and makes it responsible to
execute teams regions. When the primary-warp sees a paral-
lel region, it wakes the other warps to execute the parallel
region. This model has better register usage than the state-
machine[2, 3], however it adds a lot of synchronization. As
the primary and worker threads are completely diverged,
data flow analysis and optimization from the teams region
into the parallel construct is defeated. All shared data writ-
ten by the primary thread must be stored in GPU global or
shared memory, as with outlining.

3.2.2 Optimized Code Generation. The fork-join meth-
ods described above perform slowly. Here, we briefly describe
some studies that try to generate SPMD code directly.
Broadcasting[10, 12, 20]: This method works when the
entire region can be run in SPMD mode, all threads active
all the time. The compiler generates conditionals so that all
threads except thread zero jump around the teams region
code. Any stores to shared variables in this region are broad-
cast by being saved in CUDA shared memory or device global
memory. At the end of the teams region, all threads meet at
a synchronization point. This method may introduce a lot of
overhead due to synchronization, however it can often be op-
timized away. The most important advantage of this method
is that it supports more classical compiler optimizations.
XL compiler [13, 30]: In this work, the IBM XL compil-
ers [14] leverage interprocedural compiler analysis to deter-
mine whether running the code as SPMD is safe. But this
optimization is only enabled if the teams region can be run
redundantly by all threads. For this reason, it can be activated
in very few places.
Tregions[9]: This method is designed for the Clang [22]
project. It also tries to run the program in SPMD mode if it is
safe. It postpones the decision of running as SPMD from the
Clang frontend to the LLVM middle-end. It carries complex
execution logic from the generated code to the runtime.

3.2.3 Challenging Scenarios to Optimize Fork-join.
fork-join in a function: When a parallel construct is
in a function called within a target region, it requires a
dynamic fork-join. This case is really difficult to optimize
when the compiler has no visibility of the function body
while generating code for the target region. A compiler
may be able to optimize this case with link time optimization.
Parallelism-inhibiting directives andAPI calls:OpenMP
includes many synchronization primitives, such as master,
primary, critical, masked, single, etc., and various run-
time API calls. These hinder scalability significantly when
they are used. In addition, it requires complex runtime sup-
port to implement them on GPUs. Many programs can be
optimized if these features are not used, but this may not be
obvious at compile-time due to function calls.

4 Our Descriptive OpenMP Model
In this section, we present our Descriptive OpenMP model.
It has two advantages. First, it overcomes the performance,
portability, and productivity problems we mentioned in Sec-
tion 3.1. We give the compiler the freedom (or responsibility)
to automatically select how to exploit parallelism in most
cases, requiring fewer directives and clauses, and resulting
in more performance-portable code. Second, it allows for the
optimization of the fork-join avoiding the overhead that we
described in Section 3.2.
We leverage OpenMP’s loop construct by modifying it

slightly. Our modifications are as follows:
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1. Automatic ParallelismMapping andCreation:The
compiler can automatically map the loops to the par-
allelism created by teams or parallel constructs. It
can also create teams or parallel parallelism if none
exist.

2. Allow atomic directive: The atomic construct is al-
lowed inside a loop region.

3. Restrict paralleldirective:Because a parallel con-
struct in a loop region would inhibit our fork-join
optimization, we currently disallow this case.

The first modification is the most crucial part of our work.
As mentioned in Section 3.1, productivity is significantly de-
creased when the user must manually choose how to exploit
parallelism for each device. By shifting this burden to the
compiler, we address the current performance portability
problem and increase productivity by reducing the num-
ber of directives and clauses. We discuss this in detail in
Section 5.
Our second modification is an extension to allow the

atomic directive in loop regions. Atomics are widely used in
parallel programs and do not inhibit or limit the concurrent
execution model. We could find no reason to disallow them.

Our last modification is to restrict the parallel directive.
We mentioned overhead in Section 3.2 when this directive
is challenging to be optimized. Thus we currently eliminate
this case to have a model that the compiler can optimize
well.

The powerful part of our model is that while the com-
piler automatically selects parallelism, the programmer can
modify or improve this selection by collaborating with the
compiler using the bind clause as follows:

• omp loop bind(teams): Map this loop to teams or
teams and thread parallelism.

• omp loop bind(parallel): Map this loop to thread
parallelism.

• omp loop bind(thread): Map this loop to a single
thread for sequential execution.

• omp loop bind(teams,parallel): Map this loop to
teams and thread parallelism.

5 Automatic Parallelism Mapping
We propose automatic parallelism selection for each target
device as a compiler technique to increase portability and
productivity, without requiring the user to write different
directives for each device. An early study [32] describes some
of how to do automatic parallelism mapping only for the
GPU, but not for CPUs andOpenMP. The compiler will adjust
the parallelism for each device, and can even generate a
single binary that will run on any supported device available
at runtime.

5.1 Finding Parallel Loops
Every loop annotated by a loop construct is, by definition,
a parallel loop. The loop construct implies that the loop

iterations can be run concurrently. The compiler can safely
parallelize, vectorize, or transform the loop. OpenMP’s other
work-sharing constructs, such as for/do or distribute do
not imply truly parallel iterations. For these reasons the loop
directive has quite a few advantages.
To discover more parallelism, our compiler also does de-

pendence analysis[33] on each loop in the target region.
That’s not to say that the compiler depends on automatic
parallelization, but by default it uses parallelization to expose
more parallelism in addition to what the user has identified.
Most of the remaining compiler work is to map the parallel
loops to the available hardware parallelism.

5.2 Parallelism Mapping for GPUs
The compiler schedules parallel loops by essentially mapping
OpenMP teams to thread blocks, and OpenMP threads to
threads:
Team parallel loops: The compiler assigns the outermost
loops to thread blocks. If the outermost loop has to be run
serially, the outermost parallel loop is chosen. The user can
specify loop bind(teams) to override the compiler selec-
tion.
Thread parallel loops:Optimal memory access in the GPU
is coalesced access, that is, adjacent threads accessing con-
secutive memory addresses. Therefore, assigning thread par-
allelism is a crucial task and directly affects performance.
In order for the compiler to find this, it needs to know the
memory references in the loops and the induction variables
of the loops. Then it classifies the memory reference access
patterns as stride-1, non-stride-1, independent, or dynamic
for each loop. The aim is to minimize non-stride-1 access and
maximize stride-1 access across threads. Access frequency is
also important, so it gives more weight to each references in
nested loops. Eventually, it maps the x dimension of thread
parallelism to one of the loops, usually the loop with the
most stride-1 accesses. As a minor note, when the trip count
of the loop is smaller than warp size, the compiler may run
these loops serially to avoid underutilization of lanes. In addi-
tion, the user can specify loop bind(parallel) to override
the compiler selection.

5.3 Parallelism Mapping for CPU
The compiler schedules parallel loops by essentially map-
ping OpenMP threads to CPU threads, and OpenMP simd
parallelism to SIMD instructions:
Thread parallel loops: The compiler usually assigns the
outermost loops to threads to achieve coarse-grain paral-
lelism. If the outermost loop is not parallel or is marked as
bind(thread), it chooses the outermost available parallel
loops.
SIMD parallel loops: Each loop marked with loop con-
struct is a potential for SIMD parallelism. The compiler as-
signs them to vector instructions.
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5.4 An Example
Figure 2 shows an example of automatic parallelism selection.
Here, the user specifies the parallel loops in a target-agnostic
way. For example, the user marks the outer loops with loop
and the compiler finds that the inner loops are also parallel.
Now we explain how the compiler automatically creates and
selects parallelism differently for each target device.
GPU Parallelism: Figure 3 shows parallelism mapping for
GPU. The most critical mapping is the x dimension of threads
to achieve coalesced memory access. As we described above,
the compiler performs stride-1 and non-stride-1 memory
access analysis among the parallel loops. In this example
both loop-j have the most stride-1 access so the compiler
maps them to thread parallelism.
The user can expect a barrier after thread parallelism.

However, loop-j has no external dependence here. Therefore
our compiler eliminates redundant barrier.
GPUs have more available parallelism so the compiler

maps the remaining outer loops to thread blocks. Here, it
maps each loop-i to the x dimension of the thread block.
If there are more loops, it can leverage the other two di-
mensions of the thread block. Alternatively, the user or the
compiler can collapse the tightly-nested loops.
An important issue when mapping thread block paral-

lelism is dependences between loop-i loops. If there are de-
pendences, the compiler must synchronize the thread blocks,
but this is not efficient doing on a GPU. In such a case, the
compiler may create multiple kernels, one for each outer
loop, effectively acting as a barrier. There is no such situa-
tion in this code, so a single GPU kernel is sufficient.

Another problem compilers face is that there is a limit for
the number of threads and thread blocks and the loop trip
count may be bigger than the limits. To handle these cases,
the compiler strip-mines the loops into an outer, sequential
strip loop and an inner parallel element loop. The strip size
naturally maps to a corresponding dimension of blockDim
or gridDim.
For performance, the compiler may optimize redundant

parallel memory accesses across threads such as to yvel0 and
yvel1 in this code. In the past, we have allocated space in the
CUDA shared memory, applying loop fission, filling the the
space in the first loop and using it in the second loop. But
CUDA shared memory resides in the L1 cache, so allocating it
means sacrificing space from the L1 cache, and the L1 cache
is fairly small, 128KB for NVIDIA Ampere GPUs. Further-
more, this requires additional thread-level synchronization.
Therefore we do not do auto-caching in our compiler, we
leave it to the hardware for now. If using CUDA shared mem-
ory is necessary, the user can define team private variables
and the compiler will place them in CUDA shared memory if
they are small enough.
To increase instruction-level parallelism (ILP), the com-

piler can unroll the loops. In this example, our compiler

1 !$omp target teams
2 !$omp loop
3 DO k=y_min,y_max
4 DO j=x_min,x_max+1
5 vol_flux_x(j,k)= 0.25_8*dt*xarea(j,k)*(xvel0(j,k)&
6 + xvel0(j,k+1)+xvel1(j,k)+xvel1(j,k+1))
7 ENDDO
8 ENDDO
9 !$omp loop
10 DO k=y_min,y_max+1
11 DO j=x_min,x_max
12 vol_flux_y(j,k)= 0.25_8*dt*yarea(j,k)*(yvel0(j,k)&
13 + yvel0(j+1,k)+yvel1(j,k)+yvel1(j+1,k))
14 ENDDO
15 ENDDO
16 !$omp end target teams

Figure 2. Our proposal OpenMP program. The programmer
indicates what to parallelize rather than how to parallelize.
Our compiler achieves exactly the same parallelism as in Fig-
ure 1, with fewer directives and no target-specific directives
in single binary.

1 DO tK=y_min,y_max,gridDim.x -> Cyclic Scheduling
2 DO k=tK,min(tK+gridDim.x-1,y_max) -> Map to blockIdx.x
3 DO tJ=x_min,x_max+1,blockDim.x-> Unroll, Cyclic Scheduling
4 DO j=tJ,min(tJ+blockDim.x-1,x_max+1)-> Map to threadIdx.x
5 ! Loop Body !
6 DO tK=y_min,y_max+1,gridDim.x -> Cyclic Scheduling
7 DO k=tK,min(tK+gridDim.x-1,y_max+1) -> Map to blockIdx.x
8 DO tJ=x_min,x_max,blockDim.x -> Unroll, Cyclic Scheduling
9 DO j=tJ,min(tJ+blockDim.x-1,x_max) -> Map to threadIdx.x
10 ! Loop Body !

Figure 3. GPU Parallelism mapping of code in Figure 2
1 W = (y_max + NumThreads) / NumThreads
2 DO tK=y_min,y_max,W -> Map to Threads
3 DO k=tK,min(tK+W-1,y_max) -> Block Scheduling
4 DO j=x_min,x_max -> Vectorize
5 ! Loop Body !
6 W = (y_max+1 + NumThreads) / NumThreads
7 DO tK=y_min,y_max+1,W -> Map to Threads
8 DO k=tK,min(tK+W-1,y_max+1) -> Block Scheduling
9 DO j=x_min,x_max -> Vectorize
10 ! Loop Body !

Figure 4. CPU Parallelism mapping of code in Figure 2

unrolls loop-tJ so it does not change the memory access pat-
tern. As a side note unrolling comes with a trade-off. While
it increases ILP, it may reduce occupancy. It increases the
number of registers used in the code, and the register file
size in SM is only 64K for NVIDIA Ampere GPUs. So the
compilers need a heuristic to make unrolling decisions. This
is outside of this article, but unrolling does not affect our
parallelism selection.
CPU Parallelism: A CPU typically consists of multiple
cores (currently up to 80). Though this number is small com-
pared to a GPU, CPU cores aremuchmore powerful, typically
include SIMD units, and have much larger caches. Therefore,
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the compiler usually maps the outermost loops to threads
to achieve coarse-grain parallelism. Here it parallelizes both
of the loop-k using threads. It also applies static block loop
scheduling to achieve better cache locality. We show CPU
parallelism mapping in Figure 4.
The compiler can vectorize the loops here. As we men-

tioned earlier, all the loops here are data-independent, so
they are all vectorizable. Our compiler vectorizes the loop-j.
For performance, compilers could do outer loop vectoriza-
tion. Although our compiler does not currently implement
this, the omp loop construct is very suitable for supporting
outer loop vectorization.

6 Code Generation
In this section, we explain the code generation strategy to
implement OpenMP. We explain it in two parts: the first
for the Prescriptive OpenMP Model, and the second for our
proposed Descriptive OpenMP Model.

6.1 CPU Code Generation
6.1.1 Prescriptive OpenMP Model. We use the outlin-
ing technique as most compilers do. Our compiler extracts
the body of the target, teams, and parallel constructs into
outlined functions, replacing the body with a runtime call
that will invoke the function with the appropriate threads.
We translate loop scheduling constructs such as for, do, and
distribute into runtime calls for work distribution. In the
runtime, we launch a single team for the teams construct,
and multiple threads for the parallel construct. Unlike the
GPU with its thread blocks, threads are the coarsest unit of
parallelism on the CPU. We know that another idea would
be to bind teams to NUMA nodes, but this can slow down
code that does not use teams. Therefore, we only use thread
parallelism. Our OpenMP runtime has the same interface as
the commonly-used LLVM OpenMP runtime, so our code
generation is the same as other compilers using that library.

6.1.2 Descriptive OpenMP Model. Code generation for
the Descriptive OpenMP Model is similar to that in the Pre-
scriptive OpenMPModel for CPU targets. The key difference
is we do not generate extra code for team parallelism, we
just generate code for thread parallelism. Once the compiler
finds the loops to parallelize, it uses thread parallelism across
those iterations. Here we outline loop bodies, then we fork
the threads and execute the body with the threads. If the
inner loops are suitable for vectorization, the compiler will
generate the vector code for them.

6.2 GPU Code Generation
6.2.1 Prescriptive OpenMP Model. To support the Pre-
scriptive OpenMP Model, we use the outlining method we
explained in Section 3.2.1. As mentioned, it is not possible
to use CPU-style outlining directly for GPU targets so we

have adapted this technique for the GPU. When the pro-
gram encounters teams, we launch teams and threads and
put threads to sleep. When the program sees parallel it
executes the outlined parallel function.

6.2.2 DescriptiveOpenMPModel. GPU code generation
starts with a target construct using a similar outlining
mechanism, except the outlined function is a GPU kernel.
We do not do any other outlining. We implement the opti-
mized broadcasting method we explained in Section 3.2.1. As
mentioned in Section 3.2.3, supporting fork-join parallelism
is challenging on a GPU. Our model simply disallows this,
so the generated code can run fully in SPMD mode.
Code in the teams region must be executed only by the

primary thread (thread zero) of the team, so it must be pro-
tected to avoid conflicts or redundant execution. The com-
piler generates a neutering conditional branch around the
teams region, so all threads except thread zero branch around
that code (are neutered) and wait at a synchronization point.
Any results computed in the teams region that need to be
seen by the other threads in the team are broadcast to all
threads using CUDA shared memory or, if too large, using
device memory. The primary thread stores its results in the
appropriate memory, then joins the other threads at the syn-
chronization point. All threads then load the shared data as
appropriate and continue.

To avoid unnecessary synchronization for the teams region
at every such construct, the compiler does several optimiza-
tions. It delays insertion of the neutering conditional branch
until after data flow analysis and optimization. This allows
the compiler to propagate constants and perform other opti-
mizations between the teams region and the body of the con-
struct. The compiler also detects when the code in the teams
region can be safely executed redundantly by all threads in
the team, avoiding data sharing and synchronization alto-
gether.

Figure 5 shows code generation example for the OpenMP
code in Figure 5a. First, the compiler automatically selects the
parallelism for the loops using the technique we proposed
in Section 5. It maps loop-i to thread blocks and loop-j to the
thread parallelism. Here lines 2-5 and 10-11 correspond to
the teams region, and as mentioned above, a single thread
should execute them. To clarify this better, we illustrate this
execution model next to the code. There are two GPU thread
blocks, their primary threads run these lines.

A naïve compiler can generate neutering branches to sur-
round the teams region. If there are stores to the variable
inside, their final value should be visible at the time other
threads are activated. So the compiler broadcasts them. Fig-
ure 5b shows an example of this scenarios. Here the compiler
generates the conditionals on lines 5 and 19, allocating st1,
st2 from CUDA shared memory. While the primary thread
is running these branches, other threads wait at the barrier
(__syncthreads). It then broadcasts the written values to the
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1 #pragma omp target teams loop
2 for (i = 0; i < n; i++) {
3 float t1 = y[i];
4 float t2 = z[i];
5 float sum = 0;
6 #pragma omp loop reduction(+:sum)
7 for (k = 0; k < m; k++) {
8 sum += q[i][k] + x[k] * (t1 + t2);
9 }
10 outv[i] = sum;
11 }

Barrier

(a) Example OpenMP Code
1 __global__ void kernel() {
2 float t1, t2, sum;
3 __shared__ float st1,st2;
4 ThreadBlock-for (i = 0; i < n; i++) {
5 if(threadIdx.x ==0) {
6 st1 = y[i];
7 st2 = z[i];
10 }
11 __syncthreads();
12 t1 = st1;
13 t2 = st2;
14 sum = 0;
15 Thread-for (k = 0; k < m; k++) {
16 sum += q[i][k] + x[k] * (t1 + t2);
17 }
18 sum = BlockReduce(sum);
19 if(threadIdx.x ==0)
20 outv[i] = sum;
21 }
22 }

Barrier

Barrier

(b) Conceptually generated GPU code without broadcast optimization
1 __global__ void kernel() {
2 float t1, t2, sum;
3 ThreadBlock-for (i = 0; i < n; i++) {
4 t1 = y[i];
5 t2 = z[i];
6 sum = 0;
7 Thread-for (k = 0; k < m; k++) {
8 sum += q[i][k] + x[k] * (t1 + t2);
9 }
10 sum = BlockReduce(sum);
11 if(threadIdx.x==0)
12 outv[i] = sum;
13 }
14 }

Barrier

(c) Conceptually generated GPU code with broadcast optimization

Figure 5. Code Generation Example

registers of other threads, as seen on lines 12-13. This naïve
code generation uses extra CUDA shared memory and syn-
chronization, which degrades performance. If there are many
teams regions in the code, the cost increases.
To avoid these extra operations, the compiler analyzes

when a teams region can be safely run redundantly. Figure 5c
shows the generated code with this optimization. As seen
here, the first teams region is run redundantly, all threads

run this region. The compiler proves that it is safe to do
so because all threads load the same data from memory
and write it to their own registers. The compiler maintains
the conditional for the second teams region. Here only the
primary thread has the reduction value. Finally, the compiler
eliminates extra synchronization and extra memory usage
and generates GPU-optimized code.

7 Evaluation
This section describes the experimental platform and the test
programs, and compares the performance of those programs
with our model against production compilers on the same
hardware.

7.1 Experimental Platform
Our experiments are done on two different systems to com-
pare against different compilers. Each has an NVIDIA Tesla
V100 GPU with 80 SMs, 5120 CUDA cores, compute capa-
bility 7.0, and 16GB of device memory. The systems are as
follows:

1. 2 socket 20-core 2.40GHz Intel Skylake Gold 6148 CPU,
256GB of main memory, running CentOS 8.2. A CUDA
11.0 driver and toolkit was used.

2. 2 socket 20-core 3.80GHz IBM POWER9 CPU with
4 threads, 128GB of main memory, running Red Hat
Pegas 7.6. A CUDA 10.2 driver and toolkit was used.

7.1.1 Compilers and Environment Variables. To un-
derstand the quality of our implementation we also compare
our work in NVIDIA’s HPC compiler against three produc-
tion compilers that support the same hardware, namely GCC,
Clang, and the IBM XL compilers. We know that the Cray
compiler supports OpenMP offload well, but we did not in-
clude it in our results because we did not have access to a
Cray system. Table 2 shows information about the compilers
and the flags we used. Clang only supports C and C++. To get
comparable results from all compilers, we set the following
OpenMP environment variables:

• OMP_NUM_THREADS to 80 (Intel) or 40 (IBM).
• OMP_THREAD_LIMIT to 80 (Intel) or 40 (IBM).
• OMP_PROC_BIND to true.

7.1.2 Benchmarks. We use the 15 OpenMP programs of
the SPECACCEL benchmark suite version 1.3 [17]. The SPEC
ACCEL suite was developed by the Standard Performance
Evaluation Corporation (SPEC) High Performance Group
(HPG) to measure the performance of compute intensive
parallel applications on accelerated systems. It is comprised
of seven C, six Fortran, and two combined C and Fortran
application kernels.

7.1.3 Porting SPEC ACCEL Benchmark Suite to the
Descriptive OpenMP Model. We ported the SPEC AC-
CEL benchmarks by removing the preprocessor macros and
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Table 2. Compilers and flags used.
Compiler GPU Flags CPU Flags

NVIDIA HPC -fast -mp=gpu
-gpu=fastmath -fast -mp

IBM XL 16.1.1 -O3 -qoffload -qsmp -O3 -qsmp

GNU 11.1 -fopenmp -O3
-foffload="-O3 -lm" -O3 -fopenmp

Clang 11.1 -fopenmp -O3
-fopenmp-targets=nvptx64 -O3 -fopenmp

changing the OpenMP directives to use the omp loop direc-
tive. No other changes were made to the source code.
To compare the productivity of using our Descriptive

OpenMP Model vs. Prescriptive OpenMP Model, we counted
the number of appearances of OpenMP parallelism direc-
tive keywords in each benchmark: target, teams, parallel,
distribute, for/do, simd, or loop. As discussed earlier, us-
ing a preprocessor to make target-specific choices often re-
quires the programmer to repeat the same directive keyword
multiple times. Using the OpenMP 5.0 metadirective has
exactly the same issue. Our descriptive model uses fewer di-
rectives. Figure 6 shows the number of OpenMP parallelism
directive keywords in SPEC ACCEL benchmark suite, using
the original OpenMP and as ported using our descriptive
model. Our model needs 60% fewer OpenMP directives.

7.2 Experimental Results
We evaluated the SPEC ACCEL benchmarks by measuring
the elapsed time to run the ref datasets on each of the two
systems. These runs are SPEC estimates, as they were not run
in the SPEC performance harness. We use NVIDIA’s HPC
compiler for the baseline to demonstrate that it supports the
original OpenMP code, that its performance is competitive
with other production compilers, and that the performance
of our descriptive OpenMP model is an improvement even
against our own compiler. For each system and compiler, we
compile and run the program on the multicore CPU, and re-
compile and run the program to offload the target regions to
the GPU. For the Descriptive OpenMP Model with NVIDIA’s
HPC compiler, we compile it once with GPU flags and use
the same binary for both the CPU and the GPU, setting the
environment variable OMP_TARGET_OFFLOAD=DISABLED
to run on the CPU. Figure 7 shows speedup results compared
to the baseline. In the rest of this section, we discuss the
performance in more detail.

7.2.1 Discussion onCPUExecutions. Figure 7a and Fig-
ure 7c show the performance on Intel and IBM CPUs, re-
spectively. The most important result here is that while the

2Data directive counts: 1 in pilbdc, pswim, psismic, postencil, and pep, 2 in
pcs and pcg, 3 in pmniGhost and polbm, 5 in pclvrleaf and psp, 7 in pcsp
and pbt, 31 in ppalm.
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Figure 6. The number of OpenMP parallelism directive key-
words in each benchmark. Data directives such as target
data, target enter/exit data, declare target are not
included. Their numbers are negligible.2

model we propose uses fewer directive keywords, it pre-
serves the performance on the CPU. This demonstrates that
the OpenMP loop construct and a good compiler can be used
for higher productivity without performance loss.
The IBM XL compiler gives a compilation error on pom-

riq, ppalm and psp, and a verification error on polbm and
pclvrleaf. The other compilers can compile and run the
entire benchmark suite.

postencil runs slower in the Descriptive OpenMP Model
against Prescriptive OpenMP Model. This is because of a
bug in NVIDIA’s HPC compiler, where the inner loop is not
vectorized, which we will address in the near future.

7.2.2 Discussion onGPUExecutions. Figure 7b and Fig-
ure 7d show the performance on the GPU with Intel and IBM
hosts, respectively. Our descriptive model yields an average
of 1.91x and 1.79x speedup, with a maximum of 64x and 54x
acceleration on Intel and IBM hosts compared to NVIDIA’s
HPC compiler.

NVIDIA’s HPC compiler can compile every benchmark in
both the Prescriptive OpenMP andDescriptive OpenMPmod-
els. The GNU compiler fails at runtime for pomriq, pmd,
ppalm, psp, pmniGhost, and pswim. The clang compiler
gives a verification error for pcsp. The IBM XL compiler
gives a compilation error for ppalm.
postencil, ppalm, pclvrleaf, pep, pcg, pseismic, and

psp: For these benchmarks, it is important to efficiently par-
allelize the inner loops to take advantage of the multiple
levels of parallelism in the GPU. The Prescriptive OpenMP
model does not make good use of inner loop parallelism. In
many of these loops, only the outer loop was parallelized.
With the rigid Prescriptive OpenMP model, the compiler is
limited in exploiting the inner loop parallelism. Descriptive
OpenMP Model with NVIDIA’s HPC compiler shows its ad-
vantage here by detecting parallelism on the inner loops and
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(a) CPU: Intel Skylake host
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(b) GPU: NVIDIA Volta V100 on Intel Skylake host
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(c) CPU: IBM POWER9
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Figure 7. Figure 7a and 7c show the speedup for CPU execution on each host relative to the CPU execution baseline. Figure 7b
and 7d show the speedup for GPU execution on each host relative to the GPU execution baseline. The baseline is the original
Prescriptive OpenMP benchmarks compiled by NVIDIA’s HPC compiler. In each case, the leftmost bar is NVIDIA’s HPC
compiler using omp loop with the OpenMP Descriptive Model version of the benchmark. The Clang[simd], GNU[simd], IBM
XL[simd] bars are compiled with -DSPEC_USE_INNER_SIMD to enable omp simd usage on the inner loops. The X axis shows
the benchmark from the suite. In all cases, higher is better.

efficiently parallelizing them across the threads, resulting in
the best performance.

We also tried enabling the simd directive on the inner loop
with the SPEC_USE_INNER_SIMD macro. Indeed, the GNU
compiler gets a big performance boost, because we think
that it uses the simd directive for GPU thread-level paral-
lelism. The other compilers suffered catastrophic slowdowns,
further demonstrating the portability and productivity trade-
off.

polbm: This is the only benchmark where our work does
not outperform all other compilers; the IBM XL compiler
performs better. It assumes some data is read-only and gen-
erates a read-only-caching (texture load) instruction to load
the data. We believe that this optimization is unsafe unless
the compiler can guarantee that there are no aliasing issues
between pointers in the kernel.

pomriq: The program contains a single kernel where
only the outer loop needs to be parallelized. This code shows
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an example where loop tuning was required. NVIDIA’s De-
scriptive OpenMP Model compiler wanted to map thread
parallelism to the inner loop, but doing so degraded per-
formance. We added a bind(thread) clause to this loop so
our compiler run this loop serially and moved the thread
parallelism on the outer loop automatically.

pcsp, and pbt: For these benchmarks, our work outper-
forms the other compilers significantly. The big performance
difference is that the thread parallelism that comes with
parallel for/do is on the wrong loop in the original bench-
mark source. The memory pattern is optimized for consecu-
tive memory accesses in a single thread, which is the right
choice for CPUs. However, this is suboptimal for a GPU,
which wants consecutive memory accesses across adjacent
threads, and eventually results in a massive performance loss.
This demonstrates that the OpenMP programming model is
prescriptive and strict, and the compiler has no freedom to
optimize the parallelism.

7.2.3 Evaluation Takeaways. Descriptive OpenMP with
NVIDIA’sHPC compiler gives the best performance for GPUs
compared to all other compilers and yields 90% and 80%
speedup on on Intel and IBM POWER hosts, respectively,
compared even to our own compiler. The most important rea-
son is that it can efficiently parallelize or move appropriate
parallelism to the inner loops. Moreover, the performance
proves to be portable and gives equivalent performance on
the CPU compared to code written with prescriptive direc-
tives.

8 Conclusion
Accelerated computing has become common and the newest
pre-exascale- and exascale-class supercomputers are all ac-
celerated systems. One challenge for parallel programming
in general, and with accelerated systems in particular, is to
address the performance / portability / productivity tradeoff.
When using OpenMP, or any other parallel programming
language, parallelism must be both identified and mapped to
the hardware parallelism. In classical Prescriptive OpenMP,
these two steps are conflated. When writing an OpenMP pro-
gram thatwill be run on both accelerated and non-accelerated
systems, the programmer must often write different direc-
tives for the two types of systems.
We propose modifying and using the loop construct in

the well-accepted OpenMP API to increase all three of per-
formance, portability, and productivity. The most important
modification in our model is to change the loop construct
to be more descriptive, and to allow or require the compiler
to choose how to map the program parallelism to the target
system in most instances. This increases portability, by al-
lowing a compiler to choose different levels of parallelism
for the same loop on different target systems. This increases
productivity, by obviating the need for the programmer to
think about the target system details, and by reducing the

number of directives and clauses required. This also affects
performance. If the compiler makes bad decisions, then the
programmer may want or need to insert directives or clauses
to modify those decisions, perhaps even in some cases as
many directives or clauses as the Prescriptive OpenMPmodel
would require. If the compiler makes good decisions, the per-
formance should match that of the best Prescriptive OpenMP
version of that program.

Our experiments using the SPEC ACCEL OpenMP bench-
marks show that the performance of programs written with
our proposed model do in fact match that of Prescriptive
OpenMPwhen compiled for and run on multicore CPUs. The
experiments also show that the performance of programs
written with our proposed model exceed that of Prescriptive
OpenMPwhen compiled for and run onGPUs. The reason for
the performance improvement is that our proposed descrip-
tive model allows the compiler to generate SPMD code for
the offloaded code, which is the native execution model for a
GPU, and which has significantly less runtime overhead. We
also counted the number of OpenMP directives and clauses
for the Prescriptive OpenMP and our descriptive model, and
the descriptive loop model uses 60% fewer directives, with
no metadirective or preprocessor code for target-specific
code generation. We realize that these results are valid only
for this particular benchmark suite. Other suites may require
fine-tuning with other OpenMP directives, or the algorithm
may need to be restructured with other directives, for exam-
ple, tasking. However, if the programmer is already writing
highly parallel, scalable code for accelerators, we think it is
likely there will be little need for any other directives. We
claim this demonstrates that our model improves all three
of performance, portability, and productivity for OpenMP
programming of accelerated systems.
Even though the Prescriptive OpenMP Model does not

quite fit the GPU execution model, we think it can some-
times be optimized as efficiently as the Descriptive OpenMP
Model. A compiler should be able to identify when the code
avoids unsafe patterns and then compile it as SPMD. But if
the programmer uses any unsafe directive or API call, the
compiler will fall back to the non-SPMDmodel, resulting in a
very high performance loss. The level of these optimizations
may vary from compiler to compiler, so performance may
not be consistent across compilers. Therefore, we think that
the Descriptive OpenMP Model is a performance safe model
for GPUs.
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