
POSTER - Collective Dynamic Parallelism for Directive
Based GPU Programming Languages and Compilers

Guray Ozen
Barcelona Supercomputing

Center, Universitat Politecnica
de Catalunya

Barcelona, Spain
guray.ozen@bsc.es

Eduard Ayguade
Barcelona Supercomputing

Center, Universitat Politecnica
de Catalunya

Barcelona, Spain
eduard.ayguade@bsc.es

Jesus Labarta
Barcelona Supercomputing

Center, Universitat Politecnica
de Catalunya

Barcelona, Spain
jesus.labarta@bsc.es

ABSTRACT
Early programs for GPU (Graphics Processing Units) ac-
celeration were based on a flat, bulk parallel programming
model, in which programs had to perform a sequence of ker-
nel launches from the host CPU. In the latest releases of
these devices, dynamic (or nested) parallelism is supported,
making possible to launch kernels from threads running on
the device, without host intervention. Unfortunately, the
overhead of launching kernels from the device is higher com-
pared to launching from the host CPU, making the exploita-
tion of dynamic parallelism unprofitable.

This paper proposes and evaluates the basic idea behind a
user-directed code transformation technique, named collec-
tive dynamic parallelism, that targets the effective exploita-
tion of nested parallelism in modern GPUs. The technique
dynamically packs dynamic parallelism kernel invocations
and postpones their execution until a bunch of them are
available. We show that for sparse matrix vector multipli-
cation, CollectiveDP outperforms well optimized libraries,
making GPU useful when matrices are highly irregular.

1. INTRODUCTION AND MOTIVATION
Graphics Processing Units (GPU) have become an es-

sential component in high-performance computing) archi-
tectures to address the computational and energy-efficiency
requirements of a broad range of applications. Early GPU
programs were based on a flat, bulk parallel programming
model, in which programs had to perform a sequence of ker-
nel launches, each kernel trying to expose enough data par-
allelism to efficiently use the available resources in the GPU.
In order to give support to more irregular codes (e.g. graph
algorithms with irregular data access patterns and unpre-
dictable control flows), the latest GPU released architectures
include Dynamic Parallelism (DP). DP makes it possible to
launch kernels from threads running on the device, without
intervention of the threads running on the host processor.

Unfortunately, the overhead of launching kernels from the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

PACT ’16 September 11-15, 2016, Haifa, Israel
© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4121-9/16/09.

DOI: http://dx.doi.org/10.1145/2967938.2974056

device is much higher compared to launching from the host.
Recent studies [2, 3] show that DP introduces a notice-
able overhead during kernel launch, precluding in most cases
the exploitation of nested parallelism to improve application
performance. In order to mitigate this overhead, this paper
proposes Collective Dynamic Parallelism (CollectiveDP), a
code transformation technique for directive-based program-
ming model in order to efficiently exploit the potential per-
formance of nested parallelism.

OpenMP and OpenACC are the two most widely used
directive-based GPU programming languages. The latest
version of OpenACC supports nested parallel regions to tar-
get DP in recent Nvidia GPUs; however OpenMP standard
does not support yet. A recent study [1] proposed the se-
mantics for nested teams regions in OpenMP and gave an
implementation based on the use of DP. Figure 1 shows a
simple example to illustrate the support for directive nesting
in these two approaches.

1 /∗ Nested pa r a l l e l i sm in OpenACC ∗/
2 #pragma acc p a r a l l e l loop
3 f o r (i n t i = 0; i < N−1; ++i) {
4 #pragma acc p a r a l l e l loop

5 f o r (i n t j = arr[i] ; j < arr[i+1] ; ++j)

6 // BB.Process
7 }
8

9 /∗ Nested pa r a l l e l i sm in extended OpenMP ∗/
10 #pragma omp ta rg e t
11 #pragma omp teams d i s t r i b u t e p a r a l l e l f o r
12 f o r (i n t i = 0; i < N−1; ++i) {
13 #pragma omp teams d i s t r i b u t e p a r a l l e l f o r

14 f o r (i n t j = arr[i] ; j < arr[i+1] ; ++j)

15 // BB.Process
16 }

Figure 1: Simple example with nested regions in
OpenACC and extended OpenMP [1].

2. CODE TRANSFORMATION
In DP a parent kernel can instantiate the execution of

child kernels. Instead of directly launching the execution of
these child kernels, CollectiveDP dynamically bundles ker-
nel instantiations made by the parent kernel and postpones
their execution until a sufficiently large number of them is
available, mitigating the excessive overhead introduced by
DP. To do that, CollectiveDP saves in a buffer the necessary
context (variables) of the parent kernel in order to execute
the child kernel instantiation a posteriori. Finally, when
all threads executing the parent kernel finish, CollectiveDP
launches the execution of a single kernel, named Next-Level

http://dx.doi.org/10.1145/2967938.2974056

parallel Kernel (NLK), to actually execute the finer-grained
invocations in parallel. Hence, CollectiveDP is able to thor-
oughly minimize kernel launching count and making nested
parallelism usable, providing the right granularity for irreg-
ular applications.

Figure 2 shows the skeleton of the transformed code im-
plementing the basic CollectiveDP idea. After initializing
the data structures necessary to support CollectiveDP in
BB.CollectiveDP.Init (line 2), the parent kernel may it-
erate several times (lines 5–6) depending on the size of the
problem N. Later, each thread executing the parent kernel
decides (conditional statement in line 8, checking if enough
iterations need to be executed) whether to immediately ex-
ecute the loop (lines 11–14) or to save the context for post-
poned execution of the loop as a child kernel (line 9). Finally,
in BB.CollectiveDP.HandleCases (line 16) all postponed
kernel invocations are executed through a single NLK dis-
patch (line 19). The thread responsible for launching NLK
can be either the master of warp or the master of CTA (two
implementations named –CTA and –WARP).

1 g l o b a l macc_collectivedp (. . . , MT∗ buffer) {
2 BB.CollectiveDP.Init
3 i n t tid = threadIdx+blockIdx . x ∗ blockDim . x ;
4 i n t numThreads = grimdDim . x ∗ blockDim . x ;
5 f o r (i n t u = tid ; u < N ;
6 u += numThreads) {
7 BB.BeforeProcess
8 i f (tc > threshold)

9 BB.CollectiveDP.Save
10 e l s e {
11 f o r (i n t p = ptrs [u] ;
12 p < ptrs [u+1]; p++)

13 BB.Process

14 BB.AfterProcess
15 }
16 BB.CollectiveDP.HandleCases
17 i f (macc_master () && buff_counter) {
18 i n t BS = get_optimal_thread () ;
19 macc_NLK<<<buff_counter , BS>>>(...) ;
20 } } }

Figure 2: Code transformation skeleton for the ex-
emple in Figure 1.

Figure 3 shows the skeleton for the NLK kernel that pro-
cesses the contexts that were saved in a buffer (buffer) for
postponed kernel executions. First, NLK pops a context of
the parent thread according to its block identifier; after that
it simply executes the code in the original kernel with the
context popped from the buffer in parallel. In this example,
the context only contains the value of u in Figure 2.

1 g l o b a l void macc_NLK (. . . , MT ∗ buffer) {
2 i n t u = buffer [blockIdx . x] . macc_u ;
3 f o r (i n t p = ptrs [u] + threadIdx . x ;
4 p < ptrs [u + 1] ; p += blockDim . x)

5 BB.Process

6 BB.AfterProcess
7 }

Figure 3: NLK generated by the compiler

3. EVALUATION
Experiments are done on compute nodes equipped with

a CPU Intel(R) Core(TM) i7-4820K, 64GB of main mem-
ory, executing 64-bit Debian OS and a Nvidia Tesla Titan-X
GPU with 3072 CUDA cores, compute capability 5.2 and
12GB of device memory.

Figure 4: Speed–up for SpMV over Intel MKL li-
brary on the host.

We selected sparse matrix vector multiplication (SpMV
y = Ax), one of the most used kernels in HPC. We com-
pared CollectiveDP with state-of-the-art libraries: Nvidia
cuSPARSE and CUSP. Figure 4 presents the speed–ups, rel-
ative to Intel MKL library (11.2 using Intel OpenMP) exe-
cuted on the host, that are obtained with the different Col-
lectiveDP approaches. For highly irregular input matrices
(on the left) CollectiveDP speeds up up to 3.61x, 1.6x and
3.16x; for the other two less irregular matrices it achieves
maximum speed-up of 2.7x and 2.1x.

4. CONCLUSION
This paper proposes and evaluates a code transforma-

tion technique, CollectiveDP to effectively support nested
parallelism in GPUs, mainly tailored to compilers for user-
directed accelerator programming models such as OpenACC
or OpenMP. CollectiveDP dynamically packs kernel invoca-
tions and postpones their execution until a bunch of them
are available. Performance is evaluated using different input
matrices for a sparse matrix vector multiplication kernel.

5. ACKNOWLEDGMENTS
This work is partially supported by the IBM/BSC Deep

Learning Center Initiative, by the Spanish Government (Severo
Ochoa program SEV-2015-0493), by the Spanish Ministry of
Science and Technology (TIN2015-65316-P project) and by
the Generalitat de Catalunya (contract 2014-SGR-1051).

References
[1] G. Ozen, E. Ayguadé, and J. Labarta. Exploring dy-

namic parallelism in openmp. In Proceedings of the Sec-
ond Workshop on Accelerator Programming using Direc-
tives, WACCPD 2015, Austin, Texas, USA, November
15, 2015, pages 5:1–5:8, 2015.

[2] J. Wang and S. Yalamanchili. Characterization and anal-
ysis of dynamic parallelism in unstructured GPU ap-
plications. In 2014 IEEE International Symposium on
Workload Characterization, IISWC 2014, Raleigh, NC,
USA, October 26-28, 2014, pages 51–60, 2014.

[3] Y. Yang and H. Zhou. CUDA-NP: realizing nested
thread-level parallelism in GPGPU applications. In
ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, PPoPP ’14, Orlando, FL,
USA, February 15-19, 2014, pages 93–106, 2014.

	Introduction and motivation
	Code Transformation
	Evaluation
	Conclusion
	Acknowledgments

