
Exploring Dynamic Parallelism in OpenMP

Guray Ozen
Barcelona Supercomputing Center

Universitat Politecnica de Catalunya
Barcelona, Spain

guray.ozen@bsc.es

Eduard Ayguade
Barcelona Supercomputing

Center
Universitat Politecnica de

Catalunya
Barcelona, Spain

eduard.ayguade@bsc.es

Jesus Labarta
Barcelona Supercomputing

Center
Universitat Politecnica de

Catalunya
Barcelona, Spain

jesus.labarta@bsc.es

ABSTRACT
GPU devices are becoming a common element in current
HPC platforms due to their high performance-per-Watt ra-
tio. However, developing applications able to exploit their
dazzling performance is not a trivial task, which becomes
even harder when they have irregular data access patterns
or control flows. Dynamic Parallelism (DP) has been in-
troduced in the most recent GPU architecture as a mech-
anism to improve applicability of GPU computing in these
situations, resource utilization and execution performance.
DP allows to launch a kernel within a kernel without in-
tervention of the CPU. Current experiences reveal that DP
is offered to programmers at the expenses of an excessive
overhead which, together with its architecture dependency,
makes it difficult to see the benefits in real applications.

In this paper, we propose how to extend the current OpenMP
accelerator model to make the use of DP easy and effective.
The proposal is based on nesting of teams constructs and
conditional clauses, showing how it is possible for the com-
piler to generate code that is then efficiently executed under
dynamic runtime scheduling. The proposal has been imple-
mented on the MACC compiler supporting the OmpSs task–
based programming model and evaluated using three ker-
nels with data access and computation patterns commonly
found in real applications: sparse matrix vector multiplica-
tion, breadth-first search and divide–and–conquer Mandel-
brot. Performance results show speed-ups in the 40x range
relative to versions not using DP.

General Terms
Programming Models, Compilers

Keywords
CUDA, GPGPU, OpenMP, OpenACC, Dynamic Parallelism,
OmpSs

WACCPD@SC ’15 Austin-TX, USA

I. INTRODUCTION
The use of accelerators has been gaining popularity in the
last few years due to their potential performance and higher
ratios of performance to consumed power and performance
to system cost when compared to homogeneous architectures
based on multi-cores. The main examples of these recent
hardware accelerators include General Purpose GPUs from
Nvidia, AMD and ARM, the Intel Xeon Phi co-processors
or FPGAs from Xylinx and Altera. The current Top500 list
reflects the popularity of heterogeneous computers, as four
of the Top10 machines have either GPGPUs or Xeon Phi
co-processors. This paper focuses on GPGPUs, and in par-
ticular on how to effectively exploit the Dynamic Parallelism
(DP)[8] feature supported in the latest devices [9].

GPU programming is architecture-dependent and applica-
tions need to make use of data parallelism in order to benefit
from the massive amount of tiny processing units. GPU pro-
gramming easily results in performance losses when regular-
ity is not a characteristic of the application (e.g. divergent
control flow, irregular memory access pattern or workload
dependency). The above mentioned DP feature, recently in-
troduced in the architecture of GPUs from Nvidia and AMD,
has been proposed as a possible solution to solve these is-
sues. The feature makes it possible to launch kernels from
threads running on the device, so that threads can launch
more threads. In this way, the CPU can launch the exe-
cution of a coarse-grained kernel on the device, which in
turn launches finer-grained kernels on the device to do work
where needed. This paper focuses on the use of DP in GPUs
supporting CUDA.

The use of DP has some limitations, which include the over-
head and serialization introduced when a parent grid launches
child grids, the limit on maximum nesting depth, and the
data sharing between parent and child only through global
memory in a non-consistent way. Dealing with these limita-
tions introduce difficulties in programming and may cause
inefficiencies that can easily result in application slowdown.
[14] recently explored the ideal performance of DP in CUDA
and the actual performance when straightforwardly applied
in irregular applications.

OpenACC v2.0 exposes DP to programmers, allowing the
use of nested accelerator compute constructs (parallel and
kernels). As long as the device supports DP, nested con-
structs are transformed using DP. However, most currently
available OpenACC 2.0 compilers do not support it.

This paper contributes with an extension to the OpenMP
accelerator model to expose DP to programmers by simply
nesting teams constructs. In addition, an if clause is pro-
vided to the teams construct to manage DP conditionally:
a child kernel is launched if and only if a given condition is
met, avoiding unprofitable child kernel launches. The pro-
posal has been implemented in the MACC [11] compiler, a
research compiler for the accelerator model in the OmpSs [2]
programming model. Performance evaluation is done on an
Nvidia GPU using three selected kernels with data access
and computation patterns commonly found in real appli-
cations: sparse matrix vector multiplication, breadth-first
search and divide–and–conquer Mandelbrot.

The rest of the paper is organized as follows: Section II
reviews DP in the Nvidia architecture and CUDA program-
ming model, and provides some background on directive–
based accelerator programming models, with special focus
on OpenMP 4.0 and its current implementation in the MACC
compiler for OmpSs; Section III discusses the potential scope
and impact of DP; Section IV proposes an extension to the
OpenMP 4.0 accelerator model to expose DP and its associ-
ated implementation details; Section V presents experimen-
tal results using three mentioned kernels above; Sections VI
and VII describe related work, and conclusions and future
work, respectively.

II. BACKGROUND
This section briefly describes the support for DP in recent
Nvidia GPUs and CUDA programming model as well as the
support in directive-based approaches (OpenACC, OpenMP
4.0 and MACC/OmpSs).

A. CUDA Dynamic Parallelism
CUDA Dynamic Parallelism [8] is one of the new function-
ality provided in the Nvidia Kepler architecture. Threads
in a kernel launched by the host (parent kernel) are able
to launch new kernels (child kernels) which can also launch
new ones in a nested way; the maximum nesting depth is lim-
ited by the architecture (e.g. 24 in the GK110). With DP,
threads can be dynamically launched based on the amount
of work that needs to be performed in a particular region of
the grid domain.

Figure 1 shows a simplified version of the Mandelbrot code
in CUDA from [7]. This code implements the Mariani-Silver
algorithm, which relies on the fact that the Mandelbrot set
is connected (i.e. there is a path between any two points
belonging to the set). More generally, if the border of a re-
gion has a certain constant dwell, then every pixel in the
region has the same dwell. With this assumption the al-
gorithm recursively divides the region (kernel invocation at
Line 14) if the value of dwell is not constant on the border
(Lines 4 and 6); otherwise each pixel within the block is
set to the computed dwell value (kernel invocation at Line
9). The algorithm also checks if the maximum architectural
nesting depth is reached, branching to the iterative per-pixel
computation (kernel invocation at Line 18).

When DP is used the global memory in the device is co-
herently accessed by the parent and the child kernel, but it
is weakly consistent. To make it fully consistent the cud-

aDeviceSynchronize synchronization function needs to be

1 g l o b a l void mandelbrot block (. . . ,
2 int x0 , int y0 , int d , int depth) {
3 x0 += d ∗ blockIdx . x , y0 += d ∗ blockIdx . y ;
4 int common dwell = borde r dwe l l (. . . , x0 , y0 , d) ;
5 i f (threadIdx . x == 0 && threadIdx . y == 0) {
6 i f (/∗ common d w e l l v a l u e f o r b o r d e r ∗/) {
7 // u n i f o rm d w e l l , j u s t f i l l
8 . . .
9 d w e l l f i l l <<<...>>>(...);

10 }
11 else i f (depth + 1 < MAXDEPTH) {
12 // s u b d i v i d e r e c u r s i v e l y
13 . . .
14 mandelbrot block <<<...>>>(... , depth + 1) ;
15 } else {
16 // l e a f , p e r−p i x e l k e r n e l
17 . . .
18 mande lbrot p ixe l <<<...>>>(...);
19 }
20 }
21 }

Figure 1: Recursive Mandelbrot in CUDA

used. Local and shared memory are private to each ker-
nel. Also, their execution order is unspecified unless parent
and child are synchronized. In child kernels, device streams
are available (different from host streams), so that parent
and child may work concurrently in sufficient resources are
available in the device.

Nevertheless, to launch kernel brings overhead. In the case
of DP, since child kernels are launched in the device, la-
tency of all child kernels affects the parent kernel execu-
tion time and might drastically slowdown the application.
Re-ordering of host instructions and kernel launch, using
streams to overlap data transfers, ... can be used to reduce
the negative effect. However, when the device is heavily
occupied, launching child kernels is stalled until sufficient
compute units are available on the device.

B. Accelerator support in directive-based ap-
proaches

OpenACC. OpenACC [10] provides directives that allow
programmers to specify code regions to be offloaded to accel-
erator devices and to control many features of these devices
explicitly. The main construct is kernels, instructing the
compiler to optimize the annotated code region and exploit
the available parallelism. OpenACC also offers the data and
update constructs to manage data movement, and parallel

and loop constructs for detailed control of kernel offloading
and parallel execution of loop.

Version 2.0 provides support for nested parallelism, allowing
the programmer to nest parallel and kernels constructs
within outer parallel and kernels constructs. This nesting
of directives instructs the compiler to activate DP if avail-
able in the target device. The currently available version of
the OpenACC 2.0 compiler from PGI (15.7) used in the per-
formance evaluation section does not support DP. As far as
we know, only the PathScale ENZO compiler suite provides
support for DP[12].

OpenMP 4.0. The accelerator model in the OpenMP 4.0
programming interface also provides a set of directives to
offload the execution of code regions onto accelerators, to
map loops inside those regions onto the resources available
in the device architecture, and to map and move data be-
tween address spaces. The main directives are target data

and target, which create the data environment and offload

the execution of a code region on an accelerator device, re-
spectively. The specification also contains the teams direc-
tive to create thread teams. In each team the threads other
than the master thread do not begin execution until the mas-
ter thread encounters a parallel region. The distribute

directive specifies how the iterations of one or more loops
are distributed across the master threads of all teams that
execute the teams region.

In the current specification OpenMP does not allow the use
of nested device constructs, which precludes the use of DP in
current compilers. In this paper we propose that extension
and show how it can be implemented. We use the MACC [9]
compiler that accepts the OpenMP 4.0 accelerator directives
and implements them on the OmpSs infrastructure, both
briefly described in the next subsections.

OmpSs programming model. OmpSs is a task-based
data-flow programming model [2] that has influenced the
evolution of the OpenMP tasking model, including task de-
pendences. Its accelerator model targets homogeneous and
heterogeneous architectures with hints provided to the run-
time to dynamically exploit all the available resources, mak-
ing use of the information available in the dynamically build
task dependence graph. That information allows the run-
time to automatically move data among address spaces and
perform different kinds of optimizations (including locality,
overlapping, prefectching, ...). OmpSs is currently able to
run applications on clusters of nodes that combine shared-
memory processors (SMPs) and accelerators (GPU, Xeon
Phi and FPGA).

In the initial versions, OmpSs relied on the use of CUDA and
OpenCL for the specification of tasks to be executed on ac-
celerator devices. The target construct was used to simply
direct the compilation of the source code to the appropri-
ate CUDA or OpenCL back-end compiler and to inject the
necessary code for task offloading and data movement. The
device clause in the target construct is used not to specify
the specific device to execute the region but the device type
than can execute it, delegating to the runtime system the
decision of which device to use in case multiple devices of
that type are available.

MACC1 compiler. MACC [11], yet another research com-
piler to investigate directive-based accelerator programming,
is built on top of the Mercurium [4] source-to-source com-
piler framework and supports OmpSs and almost all direc-
tives of the OpenMP 4.0 accelerator model; it also supports
some extensions to enhance code generation and use of the
device memory hierarchy.

MACC code generation assumes the OmpSs runtime de-
pendency based parallel execution of (offloaded and non-
offloaded) task instances, task scheduling and transparent
management of (coherent or non-coherent) physically dis-
tributed address spaces. The target construct is always as-
sociated to a task construct and the target data and tar-

get update constructs are not considered as the actual data
movement is automatically implemented by the dataflow

1MACC is an abbreviation for ”Mercurium ACcelerator
Compiler”.

OmpSs runtime, reducing programming complexity. The
rest of device related OpenMP 4.0 constructs (teams, dis-
tribute and parallel for) are thoroughly implemented
with the originally specified semantics.

MACC adds to OpenMP 4.0 additional data sharing clauses
to the teams construct: dist_private, dist_firstprivate
and dist_lastprivate; with the chunk_size provided in
the dist_schedule clause, the compiler is able to make a
better use of the memory hierarchy in the device (e.g. global,
shared and local memory), allocating portions of arrays in
different teams and performing the necessary data move-
ment according to firstprivate and lastprivate seman-
tics.

III. MOTIVATION FOR DYNAMIC
PARALLELISM

Dynamic parallelism is generally useful for problems where
nested parallelism cannot be avoided. This includes, but is
not limited to, algorithms using hierarchical data structures,
such as adaptive meshes, graphs and trees, and algorithms
using recursion, where each level of recursion has parallelism.
These unstructured applications typically introduce irregu-
lar control flows and access patterns, which preclude the
exploitation of peak performance in GPU devices because
of thread divergence, poor SMX utilization and inefficient
memory accesses.

For example, Figure 2 shows one of the nested loops in the
Breadth-First Search application that is ported and anno-
tated with device constructs from the OpenMP version of
Rodinia Benchmark suite [5]. The number of instructions
executed depend on the number of edges going out from each
node (loop in Lines 12–15), which may introduce thread di-
vergence and load unbalance problems.

1#define THRESHOLD 256
2
3#pragma omp target teams distribute para l le l for
4 for (t i d = 0 ; t i d < N; t id++)
5 {
6 i f (h graph mask [t i d] == true)
7 {
8 h graph mask [t i d]= f a l s e ;
9

10 #pragma omp teams distribute para l le l for nowait \
11 i f (h graph nodes [tid] . no of edges > THRESHOLD)
12 for (i = h graph nodes [t i d] . s t a r t i n g ;
13 i < (h graph nodes [t i d] . n o o f e d g e s +
14 h graph nodes [t i d] . s t a r t i n g) ;
15 i++)
16 {
17 int id = h graph edges [i] ;
18 i f (! h g r aph v i s i t e d [id])
19 {
20 h co s t [id]= h co s t [t i d]+1;
21 h updat ing graph mask [id]=true ;
22 }
23 }
24 }
25 }

Figure 2: Breadth-First Search Code using the pro-
posed nested teams

Other algorithms include recursion in their control flow, with
functions that invoke themselves a number of times until a
base case is executed. If that function is implemented as
a device kernel, DP would allow its recursive invocation.
Figure 1 illustrates this kind of algorithms with the Mariani-
Silver version of Mandelbrot.

IV. DYNAMIC PARALLELISM IN OPENMP
In this section we propose an extension to support DP in the
OpenMP accelerator model and describe its implementation
in the MACC compiler.

Semantics of nested teams

We define a semantic for nested teams in OpenMP 4.0 [1]
in order to explicitly specify DP (current semantic is not
specified in the current release of the specification). In our
proposal, each nested teams construct might be able to cre-
ate a league of thread teams, with each team’s master thread
executing the code block in its scope. When the compiler
encounters a nested teams construct, it extracts the inner re-
gion and creates a child kernel for it. Inner device constructs
(e.g. distribute, parallel for) bind to the closest teams
construct. Thus, the programmer can easily express kernels
with different granularities and leave the compiler/runtime
system to appropriately exploit that parallelism making use
of DP.

As commented before, the use of DP incurs overheads that
can easily degrade the performance of the application. For
this reason we propose an if clause for the teams construct
with a threshold condition that can be dynamically tested to
select between kernel launch or inline execution. With the
expression in the if clause a programmer can trade over-
head, potential concurrency and load balance benefits of the
DP mechanism. In the evaluation section we show the im-
pact of such trade-off in the overall performance of the ap-
plication and observe that typically there is a wide range of
thresholds that result in close to optimal performances.The
compiler generates and if-then-else code block to imple-
ment non-nested (executed by parent) and nested (using
DP) versions of the invocation.

Figure 3 shows the code for sparse matrix vector multiplica-
tion using our proposed extensions. In this code, the sparse
matrix is stored using the usual compressed row (CSR) for-
mat. In each iteration of the loop at Line 9 one row of the
sparse matrix and vector are multiplied. The directive in
Line 8 spreads the iterations of this loop across the team-
s/threads hierarchy created by the compiler. The inner loop
in Line 18 performs the dot product of row by vector; since
the number of elements in each row may change, its execu-
tion on a single thread would lead to thread divergence. In
addition, the access to those elements can not be coalesced
in order to efficiently access memory. The use of DP in this
case, as instructed to the compiler in Lines 16-17 by using
nested teams, might result in better resource utilization if
the number of elements is long enough. The if clause is
used with a condition to prevent launching inner kernels if
the number of elements in the current row is bigger than a
defined THRESHOLD value. Besides, Figure 4 shows OpenACC
way of same multiplication. We have used its parallel con-
struct. Also we indicate with loop and reduction to inner
iteration. We couldn’t activate OpenACC nested parallel

feature on inner iteration as our OpenACC compiler (PGI)
doesn’t support DP yet.

Kernel launch

In order to implement kernel launch nesting, the MACC
compiler needs to decide on a block size to use for each

1 void SpMV CSR(uint R, u int N, TYPE ∗A, uint ∗ co l s ,
2 u int ∗rows , TYPE ∗X, TYPE ∗y , int THRESHOLD)
3 {
4 int row , elem ;
5
6 #pragma omp target map(to :A[R] , cols [R] , rows [R] ,X[R])
7 map(from :y [R])
8 #pragma omp teams distribute para l le l for
9 for (row = 0 ; row < R; ++row)

10 {
11 int r ow s ta r t = rows [row] ;
12 int row end = rows [row + 1] ;
13 int IIT = row end − r ow s ta r t ;
14 TYPE dot = 0 ;
15
16 #pragma omp teams distribute para l le l for
17 reduction(+:dot) i f (IIT > THRESHOLD)
18 for (elem = row s ta r t ; elem < row end ; elem++)
19 dot += A[elem] ∗ X[c o l s [elem]] ;
20
21 y [row] = dot ;
22 }
23
24 }

Figure 3: Sparse Matrix Vector Multiplication using
the proposed nested teams in OpenMP

1 void SpMV CSR(uint R, u int N, TYPE ∗A, uint ∗ co l s ,
2 u int ∗rows , TYPE ∗X, TYPE ∗y)
3 {
4 int row , elem ;
5
6 #pragma acc para l le l loop copyout(y [R]) \
7 copyin(A[R] , cols [R] , rows [R] ,X[R])
8 for (row = 0 ; row < R; ++row)
9 {

10 int r ow s ta r t = rows [row] ;
11 int row end = rows [row + 1] ;
12 int IIT = row end − r ow s ta r t ;
13 TYPE dot = 0 ;
14
15 #pragma acc loop reduction(+:dot)
16 for (elem = row s ta r t ; elem < row end ; elem++)
17 dot += A[elem] ∗ X[c o l s [elem]] ;
18
19 y [row] = dot ;
20 }
21
22 }

Figure 4: Sparse Matrix Vector Multiplication Ope-
nACC implementation

kernel launch. To help on this decision, the MACC com-
piler makes use of the cudaOccupancyMaxPotentialBlock-

Size API available from CUDA 6.5, which heuristically cal-
culates the kernel’s block size to achieve the best occupancy
level. In the implementation presented in this paper, MACC
uses this to configure the launch for the outermost kernel.
For the invocation of kernels in the inner levels, MACC sim-
ply performs one-iteration per thread mapping.

Another issue related with the invocation of nested kernels
is that the launching of child kernels by threads in the same
block gets serialized. This serialization can be avoided if sep-
arate CUDA streams are used for each thread. The MACC
compiler implements this hiding this limitation to the pro-
grammer and achieving kernel launch overlaps.

Data sharing

As mentioned before, parent and child kernels share the ac-
cess to global memory in the device, but with weak consis-
tency. In order to ensure consistent access to global memory,
cudaDeviceSynchronize() needs to be used. To deal with
this issue, our model implicitly injects barrier construct
only at the end of inner teams construct, which could be
disabled by adding a nowait clause to the teams construct.

When data sharing is necessary between the parent and child

kernels, the compiler uses an early memory allocation mech-
anism in order to reduce the overheads of global memory
allocation. In essence, the compiler allocates an area for
the child kernel while allocating an area for the parent ker-
nel. Thus, the allocation latency during the parent kernel
execution time is avoided. MACC compiler calculates mem-
ory size statically during the compile time, it thus allocates
memory as it considers every single parent thread will invoke
child kernel.

Reduction support

The teams directive allows reduction(reduction-identifier
: list) clause. Therefore we have implemented reduction
as well in the case of nested teams construct. To support
current clauses of teams, our extension to OpenMP 4.0 also
allows reduction. When the MACC compiler encounters
this clause, it generates reduction code at the same time
as child kernel generation. However, the reduced variables
must be returned to the parent kernel, using global mem-
ory to achieve this communication. Memory allocation for
variables in reduction clauses is then performed using the
previously mentioned early allocation mechanism.

Recursion support

As mentioned before, there is a hardware limit on maximum
nesting depth; as of Compute Capability 3.5, the hardware
limit on depth is 24 levels. In order to hide this limit to
the programmer, the compiler needs to generate multiple
versions of the code.

Figure 5 shows a basic example for recursion transformation
as currently done by MACC. The upper code block is an
input code that involves recursion at Line 7. After transfor-
mation of this, the compiler generates three functions; foo,
gpu_foo and device_in_foo. The function foo corresponds
to the original function invocation and includes the entire
code replacing the recursive call with a call to gpu_foo. This
gpu_foo kernel will recursively call itself until the maximum
nesting depth is reached; when this happens, the compiler
will force the invocation of dev_in_foo which is sequential.

V. EVALUATION
In this section we present the performance evaluation of
the dynamic parallelism proposal for OpenMP and its im-
plementation in the MACC compiler. To that end we use
three kernels: sparse matrix vector multiplication (SpMV),
breadth-first search (BFS) and recursive Mandelbrot. Al-
though the kernels may seem simple codes, they are repre-
sentative of issues that do appear in many applications (like
load imbalance or recursion represented by Mandelbrot) and
important kernels in engineering (SpMV) or graph process-
ing (BFS) applications.

For the experimental evaluation we have used a node with
two IBM Power8 [13] S824L sockets (10 cores each, 8-way
SMT, running at 3.52 GHz) and 1 TB of main memory, and
two Nvidia Tesla K40c GPU devices (2888 CUDA cores,
compute capability 3.5) with 12GB of memory. GCC 4.9
has been used as a back-end compiler for CPU code gener-
ation and the CUDA 7.0 toolkit for device code generation.
OpenMP codes are compiled with the MACC compiler. We

Input OpenMP Code Proposal for Recursion

1#pragma omp declare target
2 void foo () {
3 /∗ c o d e 1 ∗/
4
5 #pragma omp target teams distribute para l le l for
6 for (int i = 0 ; i < count ; ++i) {
7 foo () ;
8 }
9

10 /∗ c o d e 2 ∗/
11 }
12#pragma omp end declare target

Transformed Code of Recursion

1 void foo () {
2 /∗ c o d e 1 ∗/
3
4 gpu foo<<< . . . >>> (. . . , 0) ;
5
6 /∗ c o d e 2 ∗/
7 }
8
9 g l o b a l gpu foo (. . . , int depth) {

10 . . .
11 i f (depth > MAXDEPTH)
12 d e v i n f o o () ;
13 else {
14 /∗ c o d e 1 ∗/
15 gpu foo<<< . . . >>> (. . . , depth + 1) ;
16 /∗ c o d e 2 ∗/
17 }
18 }
19
20 dev i c e d e v i n f o o () {
21
22 /∗ c o d e 1 ∗/
23 for (int i = 0 ; i < count ; ++i) {
24 d e v i n f o o () ;
25 }
26 /∗ c o d e 2 ∗/
27 }

Figure 5: Code transformation to handle recursion

also used the currently available OpenACC PGI 15.7 com-
piler for comparison purposes, which does not support DP.
Evaluation results are reported in terms of execution time
for the generated kernels and performance.

A. Sparse Matrix Vector Multiplication SpMV
Sparse matrix vector multiplication, y = Ax, is one of the
most used kernels in scientific computing e.g., iterative solvers
for linear systems of equations and eigensolvers. To evaluate
SpMV we used seven matrices from the University of Florida
sparse matrix collection [6], whose main characteristics are
shown in the Table 1. The last two columns show how many
times the number of elements in a row (IIT, computed in
Line 13 in Figure 3) is larger than 256 or 128 (values used as
THRESHOLD in the if condition in Line 17 in the same Figure.

Table 1: Sparse Matrices
Matrix Size Nnz IIT>256 IIT>128
rajat30 643994 6175377 121 277
ASIC 680k 682862 3871773 2 76
rajat29 643994 4866270 22 27
transient 178866 961790 13 31
c-big 345241 2341011 2 160
Raj-1 263743 1302464 65 93
trans5 116835 766396 8 32

Three versions are evaluated: OpenMP/MACC implemented
using OpenMP 4.0 and the MACC compiler; it does not
make use of nested teams (just defined in Line 8 in Figure
3); OpenACC/PGI is equivalent to the previous one but
implemented in OpenACC and compiled with the PGI com-
piler; finally OpenMP/MACC-DP uses the proposed teams
nesting for OpenMP, as shown in Figure 3, and compiled
with MACC in order to make use of DP.

Figure 6: Sparse Matrix Vector Multiplication Performance Results

Figure 6 shows the performance results obtained for the
SpMV kernel. In order to clearly show performance dif-
ference, we took into account only kernel computation time,
without considering data movement overheads. To calculate
flop performance, we used this formula (kernel time/(2 ∗
numRows ∗ numOfNonZeroElem). On average, the Ope-
nACC/PGI version is 10x times better than the equivalent
OpenMP/MACC version. However, OpenMP/MACC-DP
is 4x times faster than OpenACC/PGI, showing the per-
formance benefit of using DP. When the threshold value is
reduced to 128, the performance is lower; this is because,
waiting child kernels takes more time even though child ker-
nels are executed faster.

Figure 7: Breadth First Search 64K Graph Distri-
bution

B. Breadth-First Search BFS
The structure of the BFS code used to perform this evalu-
ation is shown in Figure 2, which comes from the Rodinia
benchmark [5]. The code is annotated with target teams

distribute parallel for in Line 3 and teams distribute

parallel for in Line 10 conditionally guarded by the if

clause dependent on the number of edges in Line 11, in-
structing the compiler to generate code making use of DP.
We also used the CUDA implementation of this algorithm
from the Rodinia benchmark suite without any modifica-
tion. OpenACC and OpenMP 4.0 versions are ported from
CPU OpenMP version of the benchmark suite.

In order to evaluate BFS application we used six different
graphs of the same size (64K nodes), generated using the
graphgen application that comes with Rodinia. The origi-
nal graphgen randomly generates the number of edges for
each node; the application has been modified to follow an
exponential distribution. The edge distribution for the 6
graphs is shown in Figure 7.

Figure 8 shows the execution time results. Kernel execu-
tion time for the CUDA, MACC and PGI are very similar.
However, the DP-enabled MACC version yields up to 2.7x
speed-up.

C. Mandelbrot
Two different versions of Mandelbrot are used in this pa-
per, both annotated using OpenMP 4.0 and compiled with
MACC: escape and Mariani-Silver. In the escape algorithm
each pixel of image is handled by a CUDA thread, which
calculates the number of iterations to converge and decide
whether it belongs to the set or not. This version clearly suf-
fers from thread divergence. The Mariani-Silver algorithm
exploits a hierarchical approach, as we explained before in
Section II. The code is shown in Figure 10 that is ported
from CUDA version at Figure 1. It incorporates three child
kernel invocations. The first inner teams provides fine grain
parallelism to fill uniform regions. For non-uniform regions
it subdivides recursively as is seen at Line 17. When the
maximum nested is reached or size of sub region is small the
last teams is used to compute to rest of image pixel by pixel.

Figure 9 compares the performance results of these two al-
gorithms for 4 different sizes of the set. The code of escape
algorithm was compiled with MACC without DP. The DP-
enabled MACC compiler was used for the Mariani-Silver
algorithm. On the average a 3.62x speed-up is obtained;
only for the smaller set size the escape algorithm performs
better.

Figure 8: Breadth First Search CUDA Kernel Execution Time

Figure 9: Mandelbrot Application Performance Re-
sults

VI. RELATED WORK
OpenACC [10] is a directive-based programming model de-
signed to allow easy access to emerging advanced architec-
ture systems for existing production codes. It also provides
an approach to coding the newest technologies without the
need to learn native GPU programming languages. Ver-
sion 2.0 introduced nested-parallelism. Our proposal for
OpenMP 4.0 has been clearly inspired by the approach fol-
lowed by OpenACC.

In [15] we see an alternative to dynamic parallelism. They
introduce a couple of directives in order to mimic nested par-
allelism without using DP. The main idea is to create more
than the requested number of threads in advance, and to
activate them to compute the iterations annotated by their
directives. We believe that the solution based on dynamic
parallelism is more suitable for large numbers of threads.

In order to obtain the best thread hierarchy, dynamic par-
allelism may be the solution. The research paper [3] com-
pares two methods for achieving the best hierarchy. One of
the methods does a statically configuration based on code
structure at compile time. The other method uses dynamic
parallelism at runtime to decide the hierarchy. Results show
that with dynamic parallelism the best thread hierarchy is
obtained; however, they reported a lot of overhead when

1#pragma omp declare target
2 void mandelbrot (. . . , int depth)
3 {
4 #pragma omp target teams distribute
5 for (. . .)
6 {
7 /∗ Comp u t a t i o n s ∗/
8 i f (/∗ common d w e l l v a l u e f o r b o r d e r o f r e c t a n g l e ∗/)
9 {

10 #pragma omp teams distribute para l le l for
11 for (. . .)
12 /∗ Comp u t a t i o n s ∗/
13 }
14 else i f (depth + 1 < MAXDEPTH
15 && /∗ c o n d i t i o n t o c h e c k s i z e ∗/)
16 {
17 mandelbrot (. . . , depth + 1) ;
18 }
19 else {
20 #pragma omp teams distribute para l le l for
21 for (. . .)
22 /∗ Comp u t a t i o n s ∗/
23 }
24 }
25 }
26#pragma omp end declare target

Figure 10: Mandelbrot code using the proposed
nested teams in OpenMP 4.0.

shaping an entire hierarchy with dynamic parallelism.

[14] analyzes characteristics of irregular applications in which
DP can be used. Performance results are shown in terms of
ideal performance (excluding overhead of DP) versus real
performance. These applications, though suitable for DP,
do not benefit from its use, and in fact suffered from appli-
cation slowdown.

VII. CONCLUSION AND FUTURE WORK
In this paper we have proposed an extension to the current
OpenMP 4.0 accelerator model to allow teams nesting. The
proposal is implemented using dynamic parallelism in the
MACC compiler. The proposal also offers a way to condi-
tionally control dynamic parallelism, avoiding in some cases
the excessive overhead caused by this feature. Although
this condition is currently inserted by the programmer, pro-
file guided techniques or compilers which has just in time
capability could discover these conditional expressions auto-
matically.

VIII. ACKNOWLEDGMENTS
This work is partially supported by the BSC-IBM Tech-
nology Center for Supercomputing agreement, the Spanish
Ministry of Innovation ”Computacion de Altas Prestaciones
VI”(TIN2012-34557) and the ”Grup de Recerca de Qualitat”
2014-SGR-1051 from Generalitat de Catalunya.

IX. REFERENCES
[1] OpenMP ARB. Openmp application program

interface, v. 4.0. 2013.

[2] Eduard Ayguadé, Rosa M. Badia, Pieter Bellens,
Daniel Cabrera, Alejandro Duran, Roger Ferrer, Marc
González, Francisco D. Igual, Daniel
Jiménez-González, and Jesús Labarta. Extending
openmp to survive the heterogeneous multi-core era.
International Journal of Parallel Programming,
38(5-6):440–459, 2010.

[3] Carlo Bertolli, Samuel F. Antao, Alexandre E.
Eichenberger, Kevin O’Brien, Zehra Sura, Arpith C.
Jacob, Tong Chen, and Olivier Sallenave.
Coordinating gpu threads for openmp 4.0 in llvm. In
Proceedings of the 2014 LLVM Compiler
Infrastructure in HPC, LLVM-HPC ’14, pages 12–21,
Piscataway, NJ, USA, 2014. IEEE Press.

[4] Barcelona Supercomputing Center. The mercurium
compiler http://pm.bsc.es/mcxx.

[5] Shuai Che, Michael Boyer, Jiayuan Meng, David
Tarjan, Jeremy W. Sheaffer, Sang-Ha Lee, and Kevin
Skadron. Rodinia: A benchmark suite for
heterogeneous computing. In Proceedings of the 2009
IEEE International Symposium on Workload
Characterization, IISWC 2009, October 4-6, 2009,
Austin, TX, USA, pages 44–54, 2009.

[6] Timothy A. Davis and Yifan Hu. The university of
florida sparse matrix collection. ACM Trans. Math.
Softw., 38(1):1, 2011.

[7] NVIDIA. Adaptive parallel computation with cuda
dynamic parallelism,
http://devblogs.nvidia.com/parallelforall/introduction-
cuda-dynamic-parallelism/.

[8] NVIDIA. Cuda dynamic parallelism programming
guide, 2013.

[9] NVIDIA. Next generation cuda compute architecture:
Kepler tm gk110
http://www.nvidia.es/content/pdf/kepler/nvidia-
kepler-gk110-architecture-whitepaper.pdf.

[10] OpenACC. The openacc standard,
http://www.openacc-standard.org.

[11] Guray Ozen, Eduard Ayguadé, and Jesús Labarta. On
the roles of the programmer, the compiler and the
runtime system when programming accelerators in
openmp. In Using and Improving OpenMP for Devices,
Tasks, and More - 10th International Workshop on
OpenMP, IWOMP 2014, Salvador, Brazil, September
28-30, 2014. Proceedings, pages 215–229, 2014.

[12] PathScale. Enzo , http://www.pathscale.com/enzo.

[13] Balaram Sinharoy, James Van Norstrand, Richard J.
Eickemeyer, Hung Q. Le, Jens Leenstra, Dung Q.
Nguyen, B. Konigsburg, K. Ward, M. D. Brown,
José E. Moreira, D. Levitan, S. Tung, David Hrusecky,
James W. Bishop, Michael Gschwind, Maarten
Boersma, Michael Kroener, Markus Kaltenbach, Tejas
Karkhanis, and K. M. Fernsler. IBM POWER8
processor core microarchitecture. IBM Journal of
Research and Development, 59(1), 2015.

[14] Jin Wang and Sudhakar Yalamanchili.
Characterization and analysis of dynamic parallelism
in unstructured GPU applications. In 2014 IEEE
International Symposium on Workload

Characterization, IISWC 2014, Raleigh, NC, USA,
October 26-28, 2014, pages 51–60, 2014.

[15] Yi Yang and Huiyang Zhou. CUDA-NP: realizing
nested thread-level parallelism in GPGPU
applications. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming,
PPoPP ’14, Orlando, FL, USA, February 15-19, 2014,
pages 93–106, 2014.

