
Austin,	 Texas	2015

Exploring Dynamic Parallelism on OpenMP

Guray Ozen, Eduard Ayguadé, Jesús Labarta
WACCPD @ SC’15

www.bsc.es

Guray	Ozen	- Exploring	Dynamic	Parallelism	
in	OpenMP

[1]	On	the	Roles	of	the	Programmer,	the	Compiler	 and	the	Runtime	 System	When	Programming	
Accelerators	in	OpenMP.	IWOMP	2014,	 Guray	Ozen,	Eduard	Ayguadé,	Jesús Labarta

MACC: Introduction

GurayOzen - Exploring	Dynamic	Parallelism	in	OpenMP

MACC = Mercurium ACcelerator Compiler [1]
OpenMP Accelerator + OmpSs task model
Trying to influence the evolution of the OpenMP
Extended OpenMP with experimental clauses

Three new clauses for distribute construct
Using team memory(shared) chunk by chunk without synchronization teams
dist_private([CHUNK]data, …) ,dist_firstprivate([CHUNK]data, …), dist_lastprivate([CHUNK]data, …)

Using together Task & Target directives
Programmer only specifies directionality of task data, not the actual data movement

#pragma omp task in(list) out(list) inout(list)

Doesn’t download data from GPU until #pragma omp taskwait
Data transfer minimization (host-2-gpu)
Automatically Multi-GPU task scheduling
Ignored target data & target update

MACC: Introduction

MACC: Introduction
int main(…) {

double A[N], B[N], C[N] , D[N];
while (0-> 2)
{

#pragma omp target device(acc)
#pragma omp task inout(C) out(D)
#pragma omp teams distribute parallel for

<.. Sequential Codes to generate CUDA..>

#pragma omp target device(acc)
#pragma omp task in(A) out(B)
#pragma omp teams distribute parallel for
for(i=0 ; i< N; ++i)
<..Sequential Codes to generate CUDA..>

#pragma omp target device(acc)
#pragma omp task inout(A,B)
#pragma omp teams distribute parallel for
for(i=0 ; i< N; ++i)

<..Sequential Codes to generate CUDA..>
}

#pragma omp target device(acc)
#pragma omp task inout(C,B) in(D)
#pragma omp teams distribute parallel for
for(i=0 ; i< N; ++i)
<..Sequential Codes to generate CUDA..>

#pragma omp target device(smp)
#pragma omp task in(A, C)

<..Sequential codes / Result Test..>
#pragma omp taskwait

}

I
D
L
E

E
X
E

memcpy H2D(C) memcpy H2D(A)

memcpy D2D(B)

memcpy D2H(C) memcpy D2H(A)

GurayOzen - Exploring	Dynamic	Parallelism	in	OpenMP

1. Introduction
2. Motivation for Dynamic Parallelism
3. Expanding OpenMP for Dynamic Parallelism
4. Evaluation
5. Future Works & Conclusion

Guray	Ozen	- Exploring	Dynamic	Parallelism	
in	OpenMP

Dynamic Parallelism (DP)

What’s DP
Autonomously launching kernel without CPU-host intervention
CUDA thread(parent) launches kernel(child)

What can we do with DP ?
Improved programmability
Dynamic load balancing
Increase occupancy
Ability to implement recursive algorithms

GurayOzen - Exploring	Dynamic	Parallelism	in	OpenMP

Issues with DP
Device kernel launch might incur overhead
Shared is not visible between kernels
Global memory is visible between kernels

Weak consistent
With synchronization, can be strong

Syntax of Dynamic Parallelism (DP)

Host Thread Parent Kernel

Child
Kernel A

Child Kernel B

GurayOzen - Exploring	Dynamic	Parallelism	in	OpenMP

CPU GPU
void main()
{

parent_kernel<<<…>>>();
}

void __global__ parent_kernel()
{

}

void __global__ child_kernel_A()
{

<.. Codes ..>
}

void __global__ child_kernel_B()
{

<.. Codes ..>
}

child_kernel_A<<<…>>>();
child_kernel_B<<<…>>>();
parent_kernel <<<…>>>();

Motivation

GurayOzen - Exploring	Dynamic	Parallelism	in	OpenMP

GPU
Memory

Kernel<<< … >>>

Thread 3th
1

th
2

th
4

__global__ kernel(double* A, double* X, int* iter, int N, double alpha)
{

int i = threadIdx.x + blockDim.x * gridDim.x;
<.. Code ..>
N = iter[i] - iter[i+1];

for (j = iter[i]; j < iter[i+1]; j++)
X[j] += A[j] * alpha;

<.. Code ..>
}

child_kernel<<<	…	>>>

N=7
N=8

N	=	
289

N=12

Workload
dependency

Also not
coalesced

Let’s use
Dynamic

Parallelism

__global__ kernel(double* A, double* X, int* iter, int N, double alpha)
{

int i = threadIdx.x + blockDim.x * gridDim.x;
<.. Code ..>
N = iter[i] - iter[i+1];

if(N > 256)
child_kernel<<<1,N>>>(A, X, alpha);

else
for (j = iter[i]; j < iter[i+1]; j++)

X[j] += A[j] * alpha;

<.. Code ..>
}

__global__ child_kernel(double* A, double* X, int* iter, int N, double alpha)
{

int j = threadIdx.x + blockDim.x * gridDim.x;

X[j] += A[j] * alpha;
}

DP can increase performance
Kernel launching overhead could negate performance benefit

UNMotivation

GurayOzen - Exploring	Dynamic	Parallelism	in	OpenMP

*IISWC’14, Characterization and Analysis of Dynamic Parallelism in Unstructured GPU Applications, Jin Wang, Sudhakar Yalamanchili

OpenMP 4.x
There are no directives which express dynamic parallelism
Using teams/distribute construct is prohibited

OpenACC 2.0
Standard supports
As we know, only ENZO compiler involves its implementation

Dynamic Parallelism in Pragmatic Programming Models

GurayOzen - Exploring	Dynamic	Parallelism	in	OpenMP

We defined a semantic to nested teams constructs
To express explicitly DP
The teams construct already has definition clauses for number of teams/threads

Inner device constructs (distribute, parallel for etc.) bind to closest teams
Allows inner teams’ code scope to be specified parallelism level

We propose if clause to conditionally activate nested teams construct
DP might incur overhead, conditional usage can prevent

Proposal of Dynamic Parallelism for OpenMP

The if clause can avoid redundant DP invocations
Disables pragma directive. Compiler creates if-then-else in the parent kernel
In this case, inner code block is executed sequentially

Proposal of Dynamic Parallelism for OpenMP

#define THRESHOLD 256

#pragma omp target map(…)
#pragma omp teams distribute parallel for
for (i = 0; i < N; ++i)
{
<..Computation Code..>

int M = <..Compute M value..>

#pragma omp teams distribute parallel for
nowait if(M>THRESHOLD)

for (j = 0; j < M; ++j)
for (k = 0; k < N; ++k)
{

<..Computation Code..>
}

}

MACC
……………	

MACC

parent_kernel

….

child_kernel

__global__ parent_kernel(…){
<.Parallelized Computation Code.>

int M = <..Compute M value..>

if (M > THRESHOLD)
child_kernel<<<…>>>(…);

else
for (j = 0; j < M; ++j)
for (k = 0; k < N; ++k)
<..Computation Code..>

}

BIND
BIND

Issue child-2-parent kernels can communicate only via global memory
When it’s necessary, spare space from global memory is needed
However doing allocation in the runtime incurs overheads

Solution:
We’ve implemented early memory allocation mechanism
Global memory for communication is allocated by host in advance
It’s also used when reduction is used with inner teams
It allocates memory for every single parent thread even if not used

Proposal of Dynamic Parallelism for OpenMP

GurayOzen - Exploring	Dynamic	Parallelism	in	OpenMP

How reduction works for inner teams

Proposal of Dynamic Parallelism for OpenMP

GurayOzen - Exploring	Dynamic	Parallelism	in	OpenMP

parent kernel data …

Parent Kernel Child Kernels

Conditional	
Invoke

Early allocation
Allocation SIZE =
[#Threads * sizeof
(red-item-type))]

Reduction

Parent Kernel read
reduced data from

global memory area
is assigned for

parent’s child kernel
GPU	
Global
Memory

Preliminary support for recursion
Max nesting depth is 24 for devices compute capability 3.5
Three functions are generated

Proposal of Dynamic Parallelism for OpenMP

GurayOzen - Exploring	Dynamic	Parallelism	in	OpenMP

#pragma omp declare target
void foo () {

/* code 1 */

#pragma omp target teams distribute parallel for
for (int i = 0 ; i < count ; ++i)

foo () ;

/* code 2 */
}
#pragma omp end declare target

void foo (){
/* code 1 */
gpu_foo<<< . . . >>> (... , 0) ;
/* code 2 */

}

__global__ gpu_foo (... , int depth) {
. . .
if (depth > MAXDEPTH)

dev_in_foo () ;
else {

/* code 1 */
gpu_foo<<< . . . >>> (. . . , depth + 1) ;
/* code 2 */

}
}

__device__ dev_in_foo() {
/* code 1 */
for (int i = 0 ; i < count ; ++i)

dev_in_foo() ;

/* code 2 */
}

MACC

GOALS
Apply DP onto workload-based applications to gain insight how it effects
Observe performance when DP is limited by using if clause

Hardware : NVidia K40c (2888 CUDA cores, 12GB memory)
Software

OpenACC | PGI compiler 15.7
OpenMP 4.0 | MACC compiler
CUDA | NVCC 7.0
Backend Host | GCC 4.9

Evaluation

GurayOzen - Exploring	Dynamic	Parallelism	in	OpenMP

7 matrixes are used from University of Florida sparse matrix collection
Matrixes are compressed CSR format
They are mostly filled by zero
Some rows have excessive item

Sparse Matrix Vector Multiplication (CSR)

GurayOzen - Exploring	Dynamic	Parallelism	in	OpenMP

Matrix Size NNZ IIT >
256

IIT >
128

rajat30 643994 6175377 121 277

ASIC
680k

682862 3871773 2 76

rajat29 643994 4866270 22 27

transient 178866 961790 13 31

c-big 345241 2341011 2 160

Raj-1 263743 1302464 65 93

trans5 116835 766396 8 32

BFS is ported from Rodinia Benchmark Suite
Six graphs are used. Their nodes’ number of edge are
generated by exponential distribution.
Some nodes of graph have massive amount of edges

DP is activated for these nodes

Breadth First Search

Two algorithms are used
Escape algorithm

Each pixel is handled by CUDA thread

Mariani-Silver algorithm
Block by block
Involves recursion

Mandelbrot

GurayOzen - Exploring	Dynamic	Parallelism	in	OpenMP

Dynamic parallelism is able to gain performance, but it incurs some overheads

In this paper we showed:
1. We don’t need activate DP in every single case
2. Essentially it is good for irregular cases
3. When it is used conditionally (only irregular case), it could increase

performance

In directive based Programming Models:
1. Expressing explicitly DP is useful since user might know their application

behavior
2. Conditional usage is possible

Conclusion & Future work

GurayOzen - Exploring	Dynamic	Parallelism	in	OpenMP

To download MACC
OpenMP 4.0+OmpSs compiler

www.bsc.es

Guray	Ozen	- Exploring	Dynamic	Parallelism	
in	OpenMP

PLEASE ASK

guray.ozen@bsc.es

21

MACC
Code Generation

#pragma omp target device(acc) copy_deps
#pragma omp task in(A[0:SMALL],C[0:HUGE]) inout(B[0:HUGE]) out(0:D[BIG])
#pragma omp teams first_private(A)
#pragma omp distribute parallel for dist_first_private([CHUNK]C) dist_first_last_private([CHUNK]B)
for(...)

<<..Computation..>>

Main
Memory

Device
Memory

B

Team
Memories

AC B AC

AAAAB B B BC C C C D

B B B B

B DB

Data sharing clauses with teams | private | first_private
Offers experimental 3 new clauses for distribute directive

– dist_private([CHUNK]data1, [CHUNK]data2 …)
– dist_firstprivate([CHUNK]data1, [CHUNK]data2 …)
– dist_lastprivate([CHUNK]data1, [CHUNK]data2 …) Data movement to Device Memory

Using TeamMem with Big DATA

Using TeamMem with Small DATA

Guray Ozen - IWOMP'14

Motivation

GurayOzen - Exploring	Dynamic	Parallelism	in	OpenMP

GPU
Memory

Kernel<<< … >>>

Thread 3th
1

th
2

th
4

__global__ kernel(double* A, double* X, int* iter, int N, double alpha)
{

int i = threadIdx.x + blockDim.x * gridDim.x;
<.. Code ..>
N = iter[i] - iter[i+1];

for (j = iter[i]; j < iter[i+1]; j++)
X[j] += A[j] * alpha;

<.. Code ..>
}

child_kernel<<<	…	>>>

N=7
N=8

N	=	
289

N=12

What has changed when DP is activated ?
Granularity is increased
Memory behavior could be changed
Control-flow behavior could be changed

Workload
dependency

Also not
coalesced

Let’s use
Dynamic

Parallelism

